Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207022706> ?p ?o ?g. }
- W4207022706 endingPage "T290" @default.
- W4207022706 startingPage "T279" @default.
- W4207022706 abstract "Accurate delineation of geologic facies and determination of live fluids from seismic reflection data is crucial for reservoir characterization during petroleum exploration. Facies classification or fluid identification is often done manually by an experienced interpreter, which makes this process subjective, laborious, and time-consuming. Several machine-learning models have been proposed to automate multiclass facies segmentation, but significant practical challenges (e.g., limited scope of labels for training purposes, skewed data distribution, inefficient performance evaluation metrics, etc) still remain. We present supervised and semisupervised Bayesian deep-learning methodologies to improve analysis of seismic facies depending on the scope of the labeled data. The developed networks reliably predict facies distribution using seismic reflection data and estimate the corresponding uncertainty. Therefore, they provide more consistent and meaningful information for seismic interpretation than commonly used deterministic approaches. We apply the proposed deep-learning models to field data from the North Sea to demonstrate the generalized-prediction capabilities of our methodology. In the case of sufficient availability of manually interpreted labels (or facies), the supervised learning model accurately recovers the facies distribution. When the amount of the interpreted labels is limited, we efficiently apply the semisupervised algorithm to avoid overfitting." @default.
- W4207022706 created "2022-01-26" @default.
- W4207022706 creator A5045224164 @default.
- W4207022706 creator A5068635131 @default.
- W4207022706 creator A5078868970 @default.
- W4207022706 date "2022-03-03" @default.
- W4207022706 modified "2023-10-12" @default.
- W4207022706 title "Facies prediction with Bayesian inference: Application of supervised and semisupervised deep learning" @default.
- W4207022706 cites W1901129140 @default.
- W4207022706 cites W1973785137 @default.
- W4207022706 cites W2011617960 @default.
- W4207022706 cites W2029158756 @default.
- W4207022706 cites W2043139736 @default.
- W4207022706 cites W2055520435 @default.
- W4207022706 cites W2070937743 @default.
- W4207022706 cites W2171850154 @default.
- W4207022706 cites W2247603160 @default.
- W4207022706 cites W2587301121 @default.
- W4207022706 cites W2592517375 @default.
- W4207022706 cites W2618530766 @default.
- W4207022706 cites W2807914764 @default.
- W4207022706 cites W2886991536 @default.
- W4207022706 cites W2912141339 @default.
- W4207022706 cites W2939587785 @default.
- W4207022706 cites W2955395534 @default.
- W4207022706 cites W2963223306 @default.
- W4207022706 cites W2963941635 @default.
- W4207022706 cites W3013192103 @default.
- W4207022706 cites W3033008664 @default.
- W4207022706 cites W3033757695 @default.
- W4207022706 cites W3034362861 @default.
- W4207022706 cites W3089914759 @default.
- W4207022706 cites W3090121746 @default.
- W4207022706 cites W3091591312 @default.
- W4207022706 cites W3124259473 @default.
- W4207022706 cites W3128002121 @default.
- W4207022706 cites W3163720633 @default.
- W4207022706 cites W3164593797 @default.
- W4207022706 cites W4241770221 @default.
- W4207022706 cites W4250482878 @default.
- W4207022706 doi "https://doi.org/10.1190/int-2021-0104.1" @default.
- W4207022706 hasPublicationYear "2022" @default.
- W4207022706 type Work @default.
- W4207022706 citedByCount "4" @default.
- W4207022706 countsByYear W42070227062022 @default.
- W4207022706 crossrefType "journal-article" @default.
- W4207022706 hasAuthorship W4207022706A5045224164 @default.
- W4207022706 hasAuthorship W4207022706A5068635131 @default.
- W4207022706 hasAuthorship W4207022706A5078868970 @default.
- W4207022706 hasConcept C107673813 @default.
- W4207022706 hasConcept C108583219 @default.
- W4207022706 hasConcept C109007969 @default.
- W4207022706 hasConcept C119857082 @default.
- W4207022706 hasConcept C124101348 @default.
- W4207022706 hasConcept C127313418 @default.
- W4207022706 hasConcept C14641988 @default.
- W4207022706 hasConcept C146588470 @default.
- W4207022706 hasConcept C151730666 @default.
- W4207022706 hasConcept C154945302 @default.
- W4207022706 hasConcept C187320778 @default.
- W4207022706 hasConcept C22019652 @default.
- W4207022706 hasConcept C2776214188 @default.
- W4207022706 hasConcept C41008148 @default.
- W4207022706 hasConcept C50644808 @default.
- W4207022706 hasConcept C89600930 @default.
- W4207022706 hasConceptScore W4207022706C107673813 @default.
- W4207022706 hasConceptScore W4207022706C108583219 @default.
- W4207022706 hasConceptScore W4207022706C109007969 @default.
- W4207022706 hasConceptScore W4207022706C119857082 @default.
- W4207022706 hasConceptScore W4207022706C124101348 @default.
- W4207022706 hasConceptScore W4207022706C127313418 @default.
- W4207022706 hasConceptScore W4207022706C14641988 @default.
- W4207022706 hasConceptScore W4207022706C146588470 @default.
- W4207022706 hasConceptScore W4207022706C151730666 @default.
- W4207022706 hasConceptScore W4207022706C154945302 @default.
- W4207022706 hasConceptScore W4207022706C187320778 @default.
- W4207022706 hasConceptScore W4207022706C22019652 @default.
- W4207022706 hasConceptScore W4207022706C2776214188 @default.
- W4207022706 hasConceptScore W4207022706C41008148 @default.
- W4207022706 hasConceptScore W4207022706C50644808 @default.
- W4207022706 hasConceptScore W4207022706C89600930 @default.
- W4207022706 hasIssue "2" @default.
- W4207022706 hasLocation W42070227061 @default.
- W4207022706 hasOpenAccess W4207022706 @default.
- W4207022706 hasPrimaryLocation W42070227061 @default.
- W4207022706 hasRelatedWork W2790662084 @default.
- W4207022706 hasRelatedWork W2795435272 @default.
- W4207022706 hasRelatedWork W2951851447 @default.
- W4207022706 hasRelatedWork W2989932438 @default.
- W4207022706 hasRelatedWork W3099765033 @default.
- W4207022706 hasRelatedWork W4223943233 @default.
- W4207022706 hasRelatedWork W4285802257 @default.
- W4207022706 hasRelatedWork W4312200629 @default.
- W4207022706 hasRelatedWork W4361732492 @default.
- W4207022706 hasRelatedWork W4380075502 @default.
- W4207022706 hasVolume "10" @default.
- W4207022706 isParatext "false" @default.
- W4207022706 isRetracted "false" @default.