Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207030973> ?p ?o ?g. }
- W4207030973 abstract "Abstract We propose a sequential sampling approach to training statistical digital twins. This approach is relevant for real‐world engineering problems with expensive data generation. Prerequisite for building surrogates is sufficient data; however, oversampling does not improve regression accuracy. The time for data generation may be reduced by: (a) applying a classifier to improve data quality and avoid evaluation of infeasible inputs, and (b) employing dynamic sampling linked to regression quality. In dynamic sampling, the initial sampling rate is large to generate enough data for surrogate regression in a few iterations; the sampling rate gradually slows down with the improvement of the iteratively refined surrogate. A dynamic process and a steady‐state process from the field of carbon capture and utilization are used as case studies: pressure swing adsorption (PSA) and gas‐to‐liquids (GTL). The computational costs for surrogates generation are reduced by 86% for PSA and 51% for GTL, compared with employing a static sampling rate." @default.
- W4207030973 created "2022-01-26" @default.
- W4207030973 creator A5022193770 @default.
- W4207030973 creator A5029870664 @default.
- W4207030973 creator A5046757416 @default.
- W4207030973 date "2022-02-08" @default.
- W4207030973 modified "2023-09-26" @default.
- W4207030973 title "Efficient surrogates construction of chemical processes: Case studies on pressure swing adsorption and <scp>gas‐to‐liquids</scp>" @default.
- W4207030973 cites W1439116577 @default.
- W4207030973 cites W1512383952 @default.
- W4207030973 cites W1532400220 @default.
- W4207030973 cites W1967989271 @default.
- W4207030973 cites W1984753492 @default.
- W4207030973 cites W1989245622 @default.
- W4207030973 cites W2029538494 @default.
- W4207030973 cites W2036698077 @default.
- W4207030973 cites W2041485530 @default.
- W4207030973 cites W2046347241 @default.
- W4207030973 cites W2070665593 @default.
- W4207030973 cites W2081756587 @default.
- W4207030973 cites W2087681485 @default.
- W4207030973 cites W2093229042 @default.
- W4207030973 cites W2137983211 @default.
- W4207030973 cites W2141562620 @default.
- W4207030973 cites W2151635674 @default.
- W4207030973 cites W2269494378 @default.
- W4207030973 cites W2333824955 @default.
- W4207030973 cites W2442885681 @default.
- W4207030973 cites W2478307678 @default.
- W4207030973 cites W2539694086 @default.
- W4207030973 cites W2593499816 @default.
- W4207030973 cites W2617008217 @default.
- W4207030973 cites W2727758076 @default.
- W4207030973 cites W2756659234 @default.
- W4207030973 cites W2776493547 @default.
- W4207030973 cites W2782485997 @default.
- W4207030973 cites W2788545772 @default.
- W4207030973 cites W2907578745 @default.
- W4207030973 cites W2944120742 @default.
- W4207030973 cites W2971969050 @default.
- W4207030973 cites W3080188558 @default.
- W4207030973 cites W3101644814 @default.
- W4207030973 cites W3103957401 @default.
- W4207030973 cites W3107607728 @default.
- W4207030973 cites W3118643886 @default.
- W4207030973 cites W3162414045 @default.
- W4207030973 cites W3181553250 @default.
- W4207030973 cites W4239510810 @default.
- W4207030973 cites W4301025388 @default.
- W4207030973 doi "https://doi.org/10.1002/aic.17616" @default.
- W4207030973 hasPublicationYear "2022" @default.
- W4207030973 type Work @default.
- W4207030973 citedByCount "0" @default.
- W4207030973 crossrefType "journal-article" @default.
- W4207030973 hasAuthorship W4207030973A5022193770 @default.
- W4207030973 hasAuthorship W4207030973A5029870664 @default.
- W4207030973 hasAuthorship W4207030973A5046757416 @default.
- W4207030973 hasBestOaLocation W42070309731 @default.
- W4207030973 hasConcept C105795698 @default.
- W4207030973 hasConcept C106131492 @default.
- W4207030973 hasConcept C111919701 @default.
- W4207030973 hasConcept C127413603 @default.
- W4207030973 hasConcept C140779682 @default.
- W4207030973 hasConcept C150394285 @default.
- W4207030973 hasConcept C178790620 @default.
- W4207030973 hasConcept C185592680 @default.
- W4207030973 hasConcept C197323446 @default.
- W4207030973 hasConcept C201416721 @default.
- W4207030973 hasConcept C21880701 @default.
- W4207030973 hasConcept C2776257435 @default.
- W4207030973 hasConcept C31258907 @default.
- W4207030973 hasConcept C31972630 @default.
- W4207030973 hasConcept C33923547 @default.
- W4207030973 hasConcept C41008148 @default.
- W4207030973 hasConcept C83546350 @default.
- W4207030973 hasConcept C98045186 @default.
- W4207030973 hasConceptScore W4207030973C105795698 @default.
- W4207030973 hasConceptScore W4207030973C106131492 @default.
- W4207030973 hasConceptScore W4207030973C111919701 @default.
- W4207030973 hasConceptScore W4207030973C127413603 @default.
- W4207030973 hasConceptScore W4207030973C140779682 @default.
- W4207030973 hasConceptScore W4207030973C150394285 @default.
- W4207030973 hasConceptScore W4207030973C178790620 @default.
- W4207030973 hasConceptScore W4207030973C185592680 @default.
- W4207030973 hasConceptScore W4207030973C197323446 @default.
- W4207030973 hasConceptScore W4207030973C201416721 @default.
- W4207030973 hasConceptScore W4207030973C21880701 @default.
- W4207030973 hasConceptScore W4207030973C2776257435 @default.
- W4207030973 hasConceptScore W4207030973C31258907 @default.
- W4207030973 hasConceptScore W4207030973C31972630 @default.
- W4207030973 hasConceptScore W4207030973C33923547 @default.
- W4207030973 hasConceptScore W4207030973C41008148 @default.
- W4207030973 hasConceptScore W4207030973C83546350 @default.
- W4207030973 hasConceptScore W4207030973C98045186 @default.
- W4207030973 hasFunder F4320320709 @default.
- W4207030973 hasFunder F4320321848 @default.
- W4207030973 hasIssue "6" @default.
- W4207030973 hasLocation W42070309731 @default.
- W4207030973 hasLocation W42070309732 @default.
- W4207030973 hasOpenAccess W4207030973 @default.