Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207035006> ?p ?o ?g. }
- W4207035006 endingPage "15" @default.
- W4207035006 startingPage "1" @default.
- W4207035006 abstract "Transarterial chemoembolization (TACE) is recommended for intermediate-stage HCC patients. Owing to substantial variation in its efficacy, indicators of patient responses to TACE need to be determined.A Gene Expression Omnibus (GEO) dataset consisting of patients of different TACE-response status was retrieved. Differentially expressed genes (DEGs) were calculated and variable gene ontology analyses were conducted. Potential drugs and response to immunotherapy were predicted using multiple bioinformatic algorithms. We built and compared 5 machine-learning models with finite genes to predict patients' response to TACE. The model was also externally validated to discern different survival outcomes after TACE. Tumor-infiltrating lymphocytes (TILs) and tumor stemness index were evaluated to explore potential mechanism of our model.The gene set variation analysis revealed enhanced pathways related to G2/M checkpoint, E2F, mTORC1, and myc in TACE nonresponders. TACE responders had better immunotherapy response too. 373 DEGs were detected and the upregulated DEGs in nonresponders were enriched in IL-17 signal pathway. 5 machine-learning models were constructed and evaluated, and a linear support vector machine (SVM)-based model with 10 genes was selected (AQP1, FABP4, HERC6, LOX, PEG10, S100A8, SPARCL1, TIAM1, TSPAN8, and TYRO3). The model achieved an AUC and accuracy of 0.944 and 0.844, respectively, in the development cohort. In the external validation cohort comprised of patients receiving adjuvant TACE and postrecurrence TACE treatment, the predicted response group significantly outlived the predicted nonresponse counterparts. TACE nonresponders tend to have more macrophage M0 cells and lower resting mast cells in the tumor tissue and the stemness index is also higher than responders. Those characteristics were successfully captured by our model.The model based on expression data of 10 genes could potentially predict HCC patients' response and prognosis after TACE treatment. The discriminating power was TACE-specific." @default.
- W4207035006 created "2022-01-26" @default.
- W4207035006 creator A5027748709 @default.
- W4207035006 creator A5033707375 @default.
- W4207035006 creator A5048781865 @default.
- W4207035006 creator A5058560135 @default.
- W4207035006 creator A5067810459 @default.
- W4207035006 creator A5073229168 @default.
- W4207035006 date "2022-01-24" @default.
- W4207035006 modified "2023-10-18" @default.
- W4207035006 title "A 10-Gene Signature Identified by Machine Learning for Predicting the Response to Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma" @default.
- W4207035006 cites W1919478107 @default.
- W4207035006 cites W1967518731 @default.
- W4207035006 cites W1985465557 @default.
- W4207035006 cites W2021536610 @default.
- W4207035006 cites W2083870593 @default.
- W4207035006 cites W2086130643 @default.
- W4207035006 cites W2105831274 @default.
- W4207035006 cites W2149003918 @default.
- W4207035006 cites W2159268982 @default.
- W4207035006 cites W2180028369 @default.
- W4207035006 cites W2281070800 @default.
- W4207035006 cites W2338022509 @default.
- W4207035006 cites W2436248433 @default.
- W4207035006 cites W2501867035 @default.
- W4207035006 cites W2612467560 @default.
- W4207035006 cites W2768855410 @default.
- W4207035006 cites W2784178687 @default.
- W4207035006 cites W2787520936 @default.
- W4207035006 cites W2795867722 @default.
- W4207035006 cites W2900544588 @default.
- W4207035006 cites W2900798662 @default.
- W4207035006 cites W2904123303 @default.
- W4207035006 cites W2940134865 @default.
- W4207035006 cites W2942610007 @default.
- W4207035006 cites W2982616779 @default.
- W4207035006 cites W2984620290 @default.
- W4207035006 cites W3004272028 @default.
- W4207035006 cites W3008497180 @default.
- W4207035006 cites W3008550537 @default.
- W4207035006 cites W3021526079 @default.
- W4207035006 cites W3041885570 @default.
- W4207035006 cites W3081574300 @default.
- W4207035006 cites W3096663029 @default.
- W4207035006 cites W3118135395 @default.
- W4207035006 cites W3155523182 @default.
- W4207035006 cites W3162603402 @default.
- W4207035006 cites W3167322268 @default.
- W4207035006 cites W3182293965 @default.
- W4207035006 cites W3207894116 @default.
- W4207035006 cites W2757071906 @default.
- W4207035006 doi "https://doi.org/10.1155/2022/3822773" @default.
- W4207035006 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35111225" @default.
- W4207035006 hasPublicationYear "2022" @default.
- W4207035006 type Work @default.
- W4207035006 citedByCount "5" @default.
- W4207035006 countsByYear W42070350062022 @default.
- W4207035006 countsByYear W42070350062023 @default.
- W4207035006 crossrefType "journal-article" @default.
- W4207035006 hasAuthorship W4207035006A5027748709 @default.
- W4207035006 hasAuthorship W4207035006A5033707375 @default.
- W4207035006 hasAuthorship W4207035006A5048781865 @default.
- W4207035006 hasAuthorship W4207035006A5058560135 @default.
- W4207035006 hasAuthorship W4207035006A5067810459 @default.
- W4207035006 hasAuthorship W4207035006A5073229168 @default.
- W4207035006 hasBestOaLocation W42070350061 @default.
- W4207035006 hasConcept C104317684 @default.
- W4207035006 hasConcept C121608353 @default.
- W4207035006 hasConcept C126322002 @default.
- W4207035006 hasConcept C143998085 @default.
- W4207035006 hasConcept C150194340 @default.
- W4207035006 hasConcept C2777701055 @default.
- W4207035006 hasConcept C2778019345 @default.
- W4207035006 hasConcept C2779733811 @default.
- W4207035006 hasConcept C502942594 @default.
- W4207035006 hasConcept C55493867 @default.
- W4207035006 hasConcept C71924100 @default.
- W4207035006 hasConcept C72563966 @default.
- W4207035006 hasConcept C86803240 @default.
- W4207035006 hasConceptScore W4207035006C104317684 @default.
- W4207035006 hasConceptScore W4207035006C121608353 @default.
- W4207035006 hasConceptScore W4207035006C126322002 @default.
- W4207035006 hasConceptScore W4207035006C143998085 @default.
- W4207035006 hasConceptScore W4207035006C150194340 @default.
- W4207035006 hasConceptScore W4207035006C2777701055 @default.
- W4207035006 hasConceptScore W4207035006C2778019345 @default.
- W4207035006 hasConceptScore W4207035006C2779733811 @default.
- W4207035006 hasConceptScore W4207035006C502942594 @default.
- W4207035006 hasConceptScore W4207035006C55493867 @default.
- W4207035006 hasConceptScore W4207035006C71924100 @default.
- W4207035006 hasConceptScore W4207035006C72563966 @default.
- W4207035006 hasConceptScore W4207035006C86803240 @default.
- W4207035006 hasFunder F4320321001 @default.
- W4207035006 hasLocation W42070350061 @default.
- W4207035006 hasLocation W42070350062 @default.
- W4207035006 hasLocation W42070350063 @default.
- W4207035006 hasOpenAccess W4207035006 @default.
- W4207035006 hasPrimaryLocation W42070350061 @default.