Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207039086> ?p ?o ?g. }
- W4207039086 endingPage "101823" @default.
- W4207039086 startingPage "101823" @default.
- W4207039086 abstract "Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Higher Heating Value (HHV) of MSW based on the initial materials. Four types of machine learning methods: Radial Bias Function Artificial Neural Network (RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), Support Vector Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) were used for modeling the HHV with six different inputs (carbon, water, hydrogen, oxygen, nitrogen, sulfur, and ash). The results showed that RBF-ANN can predict the HHV of MSW with higher accuracy than other models. The overall Mean Absolute Percentage Error (MAPE) for MLP-ANN, SVM and ANFIS models were 7.3, 11.77 and 23.76%, respectively. The MAPE of the best topology for RBF model (6-17-1) with spread factor of 0.8 reach to 0.45%. Finally, the results of this study proved that ANN's can be used as a practical tool with high accuracy and reliability for design and management of waste incineration plants." @default.
- W4207039086 created "2022-01-26" @default.
- W4207039086 creator A5046998811 @default.
- W4207039086 creator A5070672761 @default.
- W4207039086 date "2022-03-01" @default.
- W4207039086 modified "2023-10-07" @default.
- W4207039086 title "Machine learning models for prediction the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) for waste-to-energy evaluation" @default.
- W4207039086 cites W1596717185 @default.
- W4207039086 cites W1975390134 @default.
- W4207039086 cites W2003184899 @default.
- W4207039086 cites W2077667004 @default.
- W4207039086 cites W2088948649 @default.
- W4207039086 cites W2182833538 @default.
- W4207039086 cites W2216536395 @default.
- W4207039086 cites W2412393926 @default.
- W4207039086 cites W2491661993 @default.
- W4207039086 cites W2509678535 @default.
- W4207039086 cites W2588969494 @default.
- W4207039086 cites W2613490599 @default.
- W4207039086 cites W2740343613 @default.
- W4207039086 cites W2748859796 @default.
- W4207039086 cites W2801445698 @default.
- W4207039086 cites W2809426825 @default.
- W4207039086 cites W2882992126 @default.
- W4207039086 cites W2899924210 @default.
- W4207039086 cites W2902057020 @default.
- W4207039086 cites W2903180005 @default.
- W4207039086 cites W2911388542 @default.
- W4207039086 cites W2921431074 @default.
- W4207039086 cites W2941743586 @default.
- W4207039086 cites W2966353855 @default.
- W4207039086 cites W2968737694 @default.
- W4207039086 cites W2985391319 @default.
- W4207039086 cites W2995699160 @default.
- W4207039086 cites W3016905731 @default.
- W4207039086 cites W3020606465 @default.
- W4207039086 cites W3027737383 @default.
- W4207039086 cites W3031402809 @default.
- W4207039086 cites W3034312677 @default.
- W4207039086 cites W3034869111 @default.
- W4207039086 cites W3037124289 @default.
- W4207039086 cites W3044183102 @default.
- W4207039086 cites W3048301386 @default.
- W4207039086 cites W3049619897 @default.
- W4207039086 cites W3099305168 @default.
- W4207039086 cites W3111492663 @default.
- W4207039086 cites W3112446971 @default.
- W4207039086 cites W3116660631 @default.
- W4207039086 cites W3165131352 @default.
- W4207039086 cites W3165392192 @default.
- W4207039086 cites W3165539827 @default.
- W4207039086 doi "https://doi.org/10.1016/j.csite.2022.101823" @default.
- W4207039086 hasPublicationYear "2022" @default.
- W4207039086 type Work @default.
- W4207039086 citedByCount "13" @default.
- W4207039086 countsByYear W42070390862022 @default.
- W4207039086 countsByYear W42070390862023 @default.
- W4207039086 crossrefType "journal-article" @default.
- W4207039086 hasAuthorship W4207039086A5046998811 @default.
- W4207039086 hasAuthorship W4207039086A5070672761 @default.
- W4207039086 hasBestOaLocation W42070390861 @default.
- W4207039086 hasConcept C105795698 @default.
- W4207039086 hasConcept C105923489 @default.
- W4207039086 hasConcept C119857082 @default.
- W4207039086 hasConcept C12267149 @default.
- W4207039086 hasConcept C127413603 @default.
- W4207039086 hasConcept C130751788 @default.
- W4207039086 hasConcept C139945424 @default.
- W4207039086 hasConcept C150217764 @default.
- W4207039086 hasConcept C154945302 @default.
- W4207039086 hasConcept C156383657 @default.
- W4207039086 hasConcept C178790620 @default.
- W4207039086 hasConcept C179717631 @default.
- W4207039086 hasConcept C185592680 @default.
- W4207039086 hasConcept C186108316 @default.
- W4207039086 hasConcept C195975749 @default.
- W4207039086 hasConcept C33923547 @default.
- W4207039086 hasConcept C41008148 @default.
- W4207039086 hasConcept C50644808 @default.
- W4207039086 hasConcept C548081761 @default.
- W4207039086 hasConcept C58166 @default.
- W4207039086 hasConcept C75779659 @default.
- W4207039086 hasConceptScore W4207039086C105795698 @default.
- W4207039086 hasConceptScore W4207039086C105923489 @default.
- W4207039086 hasConceptScore W4207039086C119857082 @default.
- W4207039086 hasConceptScore W4207039086C12267149 @default.
- W4207039086 hasConceptScore W4207039086C127413603 @default.
- W4207039086 hasConceptScore W4207039086C130751788 @default.
- W4207039086 hasConceptScore W4207039086C139945424 @default.
- W4207039086 hasConceptScore W4207039086C150217764 @default.
- W4207039086 hasConceptScore W4207039086C154945302 @default.
- W4207039086 hasConceptScore W4207039086C156383657 @default.
- W4207039086 hasConceptScore W4207039086C178790620 @default.
- W4207039086 hasConceptScore W4207039086C179717631 @default.
- W4207039086 hasConceptScore W4207039086C185592680 @default.
- W4207039086 hasConceptScore W4207039086C186108316 @default.
- W4207039086 hasConceptScore W4207039086C195975749 @default.
- W4207039086 hasConceptScore W4207039086C33923547 @default.