Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207041567> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4207041567 abstract "In automotive digital development, engineers utilize multiple virtual prototyping tools to design and assess the performance of 3D shapes. However, accurate performance simulations are computationally expensive and time-consuming, which may be prohibitive for design optimization tasks. To address this challenge, we envision a 3D design assistance system for design exploration with performance assessment in the automotive domain. Recent advances in deep learning methods for learning geometric data are a promising step towards realizing such systems. Deep learning-based (variational) autoencoder models have been used for learning and compressing 3D data allowing engineers to generate low-dimensional representations of 3D designs. Finding representations in a data-driven fashion results in representations that are agnostic to downstream tasks performed on these representations and are believed to capture relevant design features. In this paper, we evaluate whether such data-driven representations contain relevant information about the input data and whether representations are meaningful in performance prediction tasks for the input data. We use machine learning-based surrogate models to predict the performances of car shapes based on the low-dimensional representation learned by 3D point cloud (variational) autoencoders. Furthermore, we exploit the stochastic nature of the representation learned by variational autoencoders to augment the training data for our surrogate models, since the limited amount of data is usually a challenge for surrogate modeling in engineering. We demonstrate that augmenting training with generated shapes improves prediction accuracy. In sum, we find that geometric deep learning approaches offer powerful tools to support the engineering design process." @default.
- W4207041567 created "2022-01-26" @default.
- W4207041567 creator A5004728957 @default.
- W4207041567 creator A5012167116 @default.
- W4207041567 creator A5049590622 @default.
- W4207041567 creator A5062646838 @default.
- W4207041567 creator A5064089961 @default.
- W4207041567 creator A5066418464 @default.
- W4207041567 creator A5076885123 @default.
- W4207041567 creator A5082912790 @default.
- W4207041567 creator A5083846200 @default.
- W4207041567 date "2021-12-05" @default.
- W4207041567 modified "2023-10-18" @default.
- W4207041567 title "Exploiting Generative Models for Performance Predictions of 3D Car Designs" @default.
- W4207041567 cites W1978626680 @default.
- W4207041567 cites W2091085232 @default.
- W4207041567 cites W2163922914 @default.
- W4207041567 cites W2786532017 @default.
- W4207041567 cites W2811105005 @default.
- W4207041567 cites W2890347315 @default.
- W4207041567 cites W3007676935 @default.
- W4207041567 cites W3089451348 @default.
- W4207041567 cites W3098269892 @default.
- W4207041567 cites W3117629641 @default.
- W4207041567 cites W3119296888 @default.
- W4207041567 cites W3170141505 @default.
- W4207041567 doi "https://doi.org/10.1109/ssci50451.2021.9660034" @default.
- W4207041567 hasPublicationYear "2021" @default.
- W4207041567 type Work @default.
- W4207041567 citedByCount "2" @default.
- W4207041567 countsByYear W42070415672022 @default.
- W4207041567 countsByYear W42070415672023 @default.
- W4207041567 crossrefType "proceedings-article" @default.
- W4207041567 hasAuthorship W4207041567A5004728957 @default.
- W4207041567 hasAuthorship W4207041567A5012167116 @default.
- W4207041567 hasAuthorship W4207041567A5049590622 @default.
- W4207041567 hasAuthorship W4207041567A5062646838 @default.
- W4207041567 hasAuthorship W4207041567A5064089961 @default.
- W4207041567 hasAuthorship W4207041567A5066418464 @default.
- W4207041567 hasAuthorship W4207041567A5076885123 @default.
- W4207041567 hasAuthorship W4207041567A5082912790 @default.
- W4207041567 hasAuthorship W4207041567A5083846200 @default.
- W4207041567 hasBestOaLocation W42070415672 @default.
- W4207041567 hasConcept C101738243 @default.
- W4207041567 hasConcept C108583219 @default.
- W4207041567 hasConcept C111919701 @default.
- W4207041567 hasConcept C119857082 @default.
- W4207041567 hasConcept C127413603 @default.
- W4207041567 hasConcept C131675550 @default.
- W4207041567 hasConcept C131979681 @default.
- W4207041567 hasConcept C154945302 @default.
- W4207041567 hasConcept C165696696 @default.
- W4207041567 hasConcept C17744445 @default.
- W4207041567 hasConcept C199539241 @default.
- W4207041567 hasConcept C2776359362 @default.
- W4207041567 hasConcept C34972735 @default.
- W4207041567 hasConcept C38652104 @default.
- W4207041567 hasConcept C41008148 @default.
- W4207041567 hasConcept C78519656 @default.
- W4207041567 hasConcept C94625758 @default.
- W4207041567 hasConcept C98045186 @default.
- W4207041567 hasConceptScore W4207041567C101738243 @default.
- W4207041567 hasConceptScore W4207041567C108583219 @default.
- W4207041567 hasConceptScore W4207041567C111919701 @default.
- W4207041567 hasConceptScore W4207041567C119857082 @default.
- W4207041567 hasConceptScore W4207041567C127413603 @default.
- W4207041567 hasConceptScore W4207041567C131675550 @default.
- W4207041567 hasConceptScore W4207041567C131979681 @default.
- W4207041567 hasConceptScore W4207041567C154945302 @default.
- W4207041567 hasConceptScore W4207041567C165696696 @default.
- W4207041567 hasConceptScore W4207041567C17744445 @default.
- W4207041567 hasConceptScore W4207041567C199539241 @default.
- W4207041567 hasConceptScore W4207041567C2776359362 @default.
- W4207041567 hasConceptScore W4207041567C34972735 @default.
- W4207041567 hasConceptScore W4207041567C38652104 @default.
- W4207041567 hasConceptScore W4207041567C41008148 @default.
- W4207041567 hasConceptScore W4207041567C78519656 @default.
- W4207041567 hasConceptScore W4207041567C94625758 @default.
- W4207041567 hasConceptScore W4207041567C98045186 @default.
- W4207041567 hasLocation W42070415671 @default.
- W4207041567 hasLocation W42070415672 @default.
- W4207041567 hasOpenAccess W4207041567 @default.
- W4207041567 hasPrimaryLocation W42070415671 @default.
- W4207041567 hasRelatedWork W2567271240 @default.
- W4207041567 hasRelatedWork W2788487394 @default.
- W4207041567 hasRelatedWork W2904372345 @default.
- W4207041567 hasRelatedWork W2922457425 @default.
- W4207041567 hasRelatedWork W2989980351 @default.
- W4207041567 hasRelatedWork W3002526821 @default.
- W4207041567 hasRelatedWork W3044458868 @default.
- W4207041567 hasRelatedWork W4213225422 @default.
- W4207041567 hasRelatedWork W4250304930 @default.
- W4207041567 hasRelatedWork W4289656111 @default.
- W4207041567 isParatext "false" @default.
- W4207041567 isRetracted "false" @default.
- W4207041567 workType "article" @default.