Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207042810> ?p ?o ?g. }
- W4207042810 endingPage "1255" @default.
- W4207042810 startingPage "1241" @default.
- W4207042810 abstract "Abstract Image hashing is an effective technology for extensive image applications, such as retrieval, authentication and copy detection. This paper designs a new image hashing scheme based on saliency map and sparse model. The major contributions are twofold. The first contribution is the construction of a weighted image representation by combining a visual attention model called Itti model and the matrix of color vector angle (CVA). Since the Itti model can efficiently detect saliency map and CVA fully captures color information of image, they contribute to a visually robust and discriminative image representation. The second contribution is the hash extraction from the weighted image representation via sparse model. A classical sparse model called robust principal component analysis is exploited to decompose the weighted image representation into a low-rank component and a sparse component. As the low-rank component can describe intrinsic structure of image, hash calculation with low-rank component can achieve good discrimination. The efficiencies of the proposed scheme are validated by extensive experiments with open databases. The results demonstrate that the proposed scheme is superior to some state-of-the-art schemes in terms of classification performance between robustness and discrimination." @default.
- W4207042810 created "2022-01-26" @default.
- W4207042810 creator A5002977387 @default.
- W4207042810 creator A5005699613 @default.
- W4207042810 creator A5049801163 @default.
- W4207042810 creator A5085013836 @default.
- W4207042810 creator A5087798028 @default.
- W4207042810 date "2022-03-16" @default.
- W4207042810 modified "2023-10-17" @default.
- W4207042810 title "Robust Image Hashing With Saliency Map And Sparse Model" @default.
- W4207042810 cites W1597415956 @default.
- W4207042810 cites W1974042113 @default.
- W4207042810 cites W1996973598 @default.
- W4207042810 cites W2001178002 @default.
- W4207042810 cites W2006037582 @default.
- W4207042810 cites W2008330503 @default.
- W4207042810 cites W2012187833 @default.
- W4207042810 cites W2017950063 @default.
- W4207042810 cites W2024713411 @default.
- W4207042810 cites W2068142860 @default.
- W4207042810 cites W2069750383 @default.
- W4207042810 cites W2072761058 @default.
- W4207042810 cites W2077094335 @default.
- W4207042810 cites W2083992397 @default.
- W4207042810 cites W2096571195 @default.
- W4207042810 cites W2109190643 @default.
- W4207042810 cites W2114550641 @default.
- W4207042810 cites W2120900208 @default.
- W4207042810 cites W2124370754 @default.
- W4207042810 cites W2128272608 @default.
- W4207042810 cites W2129812935 @default.
- W4207042810 cites W2138608979 @default.
- W4207042810 cites W2139795045 @default.
- W4207042810 cites W2145962650 @default.
- W4207042810 cites W2147121845 @default.
- W4207042810 cites W2158698691 @default.
- W4207042810 cites W2166554499 @default.
- W4207042810 cites W2168903001 @default.
- W4207042810 cites W2169041475 @default.
- W4207042810 cites W2183964636 @default.
- W4207042810 cites W2190207313 @default.
- W4207042810 cites W2346756857 @default.
- W4207042810 cites W2494160329 @default.
- W4207042810 cites W2554234430 @default.
- W4207042810 cites W2561455088 @default.
- W4207042810 cites W2586928442 @default.
- W4207042810 cites W2614818206 @default.
- W4207042810 cites W2737553646 @default.
- W4207042810 cites W2799661474 @default.
- W4207042810 cites W2801843947 @default.
- W4207042810 cites W2802113360 @default.
- W4207042810 cites W2804853849 @default.
- W4207042810 cites W284219197 @default.
- W4207042810 cites W2901017177 @default.
- W4207042810 cites W2954650190 @default.
- W4207042810 cites W2955060354 @default.
- W4207042810 cites W2963112696 @default.
- W4207042810 cites W2965544095 @default.
- W4207042810 cites W2996694842 @default.
- W4207042810 cites W3004637941 @default.
- W4207042810 cites W3032940867 @default.
- W4207042810 cites W3034490475 @default.
- W4207042810 cites W3089867232 @default.
- W4207042810 cites W3122692658 @default.
- W4207042810 cites W3130756036 @default.
- W4207042810 cites W35660749 @default.
- W4207042810 doi "https://doi.org/10.1093/comjnl/bxac010" @default.
- W4207042810 hasPublicationYear "2022" @default.
- W4207042810 type Work @default.
- W4207042810 citedByCount "0" @default.
- W4207042810 crossrefType "journal-article" @default.
- W4207042810 hasAuthorship W4207042810A5002977387 @default.
- W4207042810 hasAuthorship W4207042810A5005699613 @default.
- W4207042810 hasAuthorship W4207042810A5049801163 @default.
- W4207042810 hasAuthorship W4207042810A5085013836 @default.
- W4207042810 hasAuthorship W4207042810A5087798028 @default.
- W4207042810 hasConcept C104317684 @default.
- W4207042810 hasConcept C115961682 @default.
- W4207042810 hasConcept C124066611 @default.
- W4207042810 hasConcept C133667856 @default.
- W4207042810 hasConcept C138111711 @default.
- W4207042810 hasConcept C153180895 @default.
- W4207042810 hasConcept C154945302 @default.
- W4207042810 hasConcept C1667742 @default.
- W4207042810 hasConcept C17744445 @default.
- W4207042810 hasConcept C185592680 @default.
- W4207042810 hasConcept C199539241 @default.
- W4207042810 hasConcept C27438332 @default.
- W4207042810 hasConcept C2776359362 @default.
- W4207042810 hasConcept C2777749129 @default.
- W4207042810 hasConcept C31972630 @default.
- W4207042810 hasConcept C38652104 @default.
- W4207042810 hasConcept C41008148 @default.
- W4207042810 hasConcept C55493867 @default.
- W4207042810 hasConcept C63479239 @default.
- W4207042810 hasConcept C67388219 @default.
- W4207042810 hasConcept C94625758 @default.
- W4207042810 hasConcept C97931131 @default.