Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207045811> ?p ?o ?g. }
- W4207045811 endingPage "466" @default.
- W4207045811 startingPage "449" @default.
- W4207045811 abstract "Abstract Fast and accurate hourly forecasts of wind speed and power are crucial in quantifying and planning the energy budget in the electric grid. Modelling wind at a high resolution brings forth considerable challenges given its turbulent and highly nonlinear dynamics. In developing countries, where wind farms over a large domain are currently under construction or consideration, this is even more challenging given the necessity of modelling wind over space as well. In this work, we propose a machine learning approach to model the nonlinear hourly wind dynamics in Saudi Arabia with a domain-specific choice of knots to reduce spatial dimensionality. Our results show that for locations highlighted as wind abundant by a previous work, our approach results in an 11% improvement in the 2-h-ahead forecasted power against operational standards in the wind energy sector, yielding a saving of nearly one million US dollars over a year under current market prices in Saudi Arabia." @default.
- W4207045811 created "2022-01-26" @default.
- W4207045811 creator A5027166101 @default.
- W4207045811 creator A5048011656 @default.
- W4207045811 creator A5075199671 @default.
- W4207045811 date "2022-03-01" @default.
- W4207045811 modified "2023-10-11" @default.
- W4207045811 title "Forecasting High-Frequency Spatio-Temporal Wind Power with Dimensionally Reduced Echo State Networks" @default.
- W4207045811 cites W1516400850 @default.
- W4207045811 cites W1524392826 @default.
- W4207045811 cites W1823712830 @default.
- W4207045811 cites W1982129843 @default.
- W4207045811 cites W1991857164 @default.
- W4207045811 cites W2007973098 @default.
- W4207045811 cites W2038742869 @default.
- W4207045811 cites W2041178793 @default.
- W4207045811 cites W2041440829 @default.
- W4207045811 cites W2053152543 @default.
- W4207045811 cites W2086284119 @default.
- W4207045811 cites W2103179919 @default.
- W4207045811 cites W2111111567 @default.
- W4207045811 cites W2144001972 @default.
- W4207045811 cites W2154427588 @default.
- W4207045811 cites W2165773639 @default.
- W4207045811 cites W2171865010 @default.
- W4207045811 cites W2259421489 @default.
- W4207045811 cites W2468155953 @default.
- W4207045811 cites W2519103570 @default.
- W4207045811 cites W2803707994 @default.
- W4207045811 cites W2810640680 @default.
- W4207045811 cites W2902403787 @default.
- W4207045811 cites W2962853524 @default.
- W4207045811 cites W2962894061 @default.
- W4207045811 cites W2962993496 @default.
- W4207045811 cites W2964268202 @default.
- W4207045811 cites W3028073165 @default.
- W4207045811 cites W3044972295 @default.
- W4207045811 cites W3138140732 @default.
- W4207045811 cites W3169688096 @default.
- W4207045811 cites W3185915143 @default.
- W4207045811 cites W4235051201 @default.
- W4207045811 cites W55912154 @default.
- W4207045811 doi "https://doi.org/10.1111/rssc.12540" @default.
- W4207045811 hasPublicationYear "2022" @default.
- W4207045811 type Work @default.
- W4207045811 citedByCount "6" @default.
- W4207045811 countsByYear W42070458112022 @default.
- W4207045811 countsByYear W42070458112023 @default.
- W4207045811 crossrefType "journal-article" @default.
- W4207045811 hasAuthorship W4207045811A5027166101 @default.
- W4207045811 hasAuthorship W4207045811A5048011656 @default.
- W4207045811 hasAuthorship W4207045811A5075199671 @default.
- W4207045811 hasBestOaLocation W42070458111 @default.
- W4207045811 hasConcept C119599485 @default.
- W4207045811 hasConcept C121332964 @default.
- W4207045811 hasConcept C127413603 @default.
- W4207045811 hasConcept C13280743 @default.
- W4207045811 hasConcept C153294291 @default.
- W4207045811 hasConcept C158622935 @default.
- W4207045811 hasConcept C161067210 @default.
- W4207045811 hasConcept C163258240 @default.
- W4207045811 hasConcept C18762648 @default.
- W4207045811 hasConcept C187691185 @default.
- W4207045811 hasConcept C205649164 @default.
- W4207045811 hasConcept C206658404 @default.
- W4207045811 hasConcept C2781084341 @default.
- W4207045811 hasConcept C39432304 @default.
- W4207045811 hasConcept C41008148 @default.
- W4207045811 hasConcept C62520636 @default.
- W4207045811 hasConcept C78519656 @default.
- W4207045811 hasConcept C78600449 @default.
- W4207045811 hasConcept C89227174 @default.
- W4207045811 hasConceptScore W4207045811C119599485 @default.
- W4207045811 hasConceptScore W4207045811C121332964 @default.
- W4207045811 hasConceptScore W4207045811C127413603 @default.
- W4207045811 hasConceptScore W4207045811C13280743 @default.
- W4207045811 hasConceptScore W4207045811C153294291 @default.
- W4207045811 hasConceptScore W4207045811C158622935 @default.
- W4207045811 hasConceptScore W4207045811C161067210 @default.
- W4207045811 hasConceptScore W4207045811C163258240 @default.
- W4207045811 hasConceptScore W4207045811C18762648 @default.
- W4207045811 hasConceptScore W4207045811C187691185 @default.
- W4207045811 hasConceptScore W4207045811C205649164 @default.
- W4207045811 hasConceptScore W4207045811C206658404 @default.
- W4207045811 hasConceptScore W4207045811C2781084341 @default.
- W4207045811 hasConceptScore W4207045811C39432304 @default.
- W4207045811 hasConceptScore W4207045811C41008148 @default.
- W4207045811 hasConceptScore W4207045811C62520636 @default.
- W4207045811 hasConceptScore W4207045811C78519656 @default.
- W4207045811 hasConceptScore W4207045811C78600449 @default.
- W4207045811 hasConceptScore W4207045811C89227174 @default.
- W4207045811 hasFunder F4320322320 @default.
- W4207045811 hasIssue "2" @default.
- W4207045811 hasLocation W42070458111 @default.
- W4207045811 hasLocation W42070458112 @default.
- W4207045811 hasOpenAccess W4207045811 @default.
- W4207045811 hasPrimaryLocation W42070458111 @default.
- W4207045811 hasRelatedWork W1907865031 @default.