Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207046160> ?p ?o ?g. }
- W4207046160 endingPage "12" @default.
- W4207046160 startingPage "1" @default.
- W4207046160 abstract "The point cloud registration is important and necessary for the applications of changing detection, deformation monitoring, and so on, which is also challenging due to the vast clustered points, irregular, and complex structures of spatial objects, and quality effects of the labeled corresponding points. Aiming at this problem, we design an end-to-end 3-D graph deep learning framework of point cloud registration, which can simultaneously learn the detector (graph attention expression) and the descriptor (graph deep feature) for point cloud registration in a weakly supervised way, so that the learned detector and descriptor promote each other in the process of model optimization. Then, the detector is used to automatically extract the keypoints, and the descriptor describes the deep feature of each keypoint. In the framework, we innovatively propose a new module (named MLP_GCN), which fuses multilayer perceptron (MLP) and graph convolutional network (GCN). The MLP_GCN module is further integrated into the detector branch and descriptor branch to fully express the detector and descriptor of the point cloud. In the training process of the framework, we rotate and translate the point cloud randomly to form the training data in a weakly supervised way, which can save plenty of manually labeling time of corresponding points. In the experiments, our method can achieve better results of point cloud registration in comparison with other methods, which verifies the advantages of the proposed method." @default.
- W4207046160 created "2022-01-26" @default.
- W4207046160 creator A5013116360 @default.
- W4207046160 creator A5013718591 @default.
- W4207046160 creator A5017356288 @default.
- W4207046160 creator A5019944342 @default.
- W4207046160 creator A5027313468 @default.
- W4207046160 creator A5032061966 @default.
- W4207046160 creator A5039088967 @default.
- W4207046160 creator A5053907653 @default.
- W4207046160 creator A5078186983 @default.
- W4207046160 creator A5089171585 @default.
- W4207046160 date "2022-01-01" @default.
- W4207046160 modified "2023-09-26" @default.
- W4207046160 title "A Weakly Supervised Graph Deep Learning Framework for Point Cloud Registration" @default.
- W4207046160 cites W1599434464 @default.
- W4207046160 cites W1966790179 @default.
- W4207046160 cites W1996299496 @default.
- W4207046160 cites W2034950486 @default.
- W4207046160 cites W2045975141 @default.
- W4207046160 cites W2049981393 @default.
- W4207046160 cites W2052794186 @default.
- W4207046160 cites W2064499898 @default.
- W4207046160 cites W2069479606 @default.
- W4207046160 cites W2090146153 @default.
- W4207046160 cites W2098764590 @default.
- W4207046160 cites W2132761823 @default.
- W4207046160 cites W2152864241 @default.
- W4207046160 cites W2156163156 @default.
- W4207046160 cites W2157331557 @default.
- W4207046160 cites W2160821342 @default.
- W4207046160 cites W2341115255 @default.
- W4207046160 cites W2344109021 @default.
- W4207046160 cites W2481240925 @default.
- W4207046160 cites W2519911873 @default.
- W4207046160 cites W2555254696 @default.
- W4207046160 cites W2560609797 @default.
- W4207046160 cites W2566265240 @default.
- W4207046160 cites W2746791238 @default.
- W4207046160 cites W2883357174 @default.
- W4207046160 cites W2898223598 @default.
- W4207046160 cites W2932399282 @default.
- W4207046160 cites W2942888601 @default.
- W4207046160 cites W2951105272 @default.
- W4207046160 cites W2955307761 @default.
- W4207046160 cites W2955873422 @default.
- W4207046160 cites W2962941647 @default.
- W4207046160 cites W2963264709 @default.
- W4207046160 cites W2963281829 @default.
- W4207046160 cites W2963830382 @default.
- W4207046160 cites W2979750740 @default.
- W4207046160 cites W3015072278 @default.
- W4207046160 cites W3035272603 @default.
- W4207046160 cites W3035490780 @default.
- W4207046160 cites W3047443805 @default.
- W4207046160 cites W3048631361 @default.
- W4207046160 cites W3101012758 @default.
- W4207046160 cites W4246084825 @default.
- W4207046160 doi "https://doi.org/10.1109/tgrs.2022.3145474" @default.
- W4207046160 hasPublicationYear "2022" @default.
- W4207046160 type Work @default.
- W4207046160 citedByCount "3" @default.
- W4207046160 countsByYear W42070461602022 @default.
- W4207046160 crossrefType "journal-article" @default.
- W4207046160 hasAuthorship W4207046160A5013116360 @default.
- W4207046160 hasAuthorship W4207046160A5013718591 @default.
- W4207046160 hasAuthorship W4207046160A5017356288 @default.
- W4207046160 hasAuthorship W4207046160A5019944342 @default.
- W4207046160 hasAuthorship W4207046160A5027313468 @default.
- W4207046160 hasAuthorship W4207046160A5032061966 @default.
- W4207046160 hasAuthorship W4207046160A5039088967 @default.
- W4207046160 hasAuthorship W4207046160A5053907653 @default.
- W4207046160 hasAuthorship W4207046160A5078186983 @default.
- W4207046160 hasAuthorship W4207046160A5089171585 @default.
- W4207046160 hasConcept C108583219 @default.
- W4207046160 hasConcept C111919701 @default.
- W4207046160 hasConcept C131979681 @default.
- W4207046160 hasConcept C132525143 @default.
- W4207046160 hasConcept C138885662 @default.
- W4207046160 hasConcept C153180895 @default.
- W4207046160 hasConcept C154945302 @default.
- W4207046160 hasConcept C179717631 @default.
- W4207046160 hasConcept C2776401178 @default.
- W4207046160 hasConcept C31972630 @default.
- W4207046160 hasConcept C41008148 @default.
- W4207046160 hasConcept C41895202 @default.
- W4207046160 hasConcept C50644808 @default.
- W4207046160 hasConcept C52622490 @default.
- W4207046160 hasConcept C76155785 @default.
- W4207046160 hasConcept C79974875 @default.
- W4207046160 hasConcept C80444323 @default.
- W4207046160 hasConcept C81363708 @default.
- W4207046160 hasConcept C94915269 @default.
- W4207046160 hasConcept C98045186 @default.
- W4207046160 hasConceptScore W4207046160C108583219 @default.
- W4207046160 hasConceptScore W4207046160C111919701 @default.
- W4207046160 hasConceptScore W4207046160C131979681 @default.
- W4207046160 hasConceptScore W4207046160C132525143 @default.