Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207046593> ?p ?o ?g. }
- W4207046593 endingPage "103814" @default.
- W4207046593 startingPage "103814" @default.
- W4207046593 abstract "BackgroundNon-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity.MethodsThe microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR.FindingsSeventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regulation processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192–5p and -194–5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is confirmed as a specific BE marker.InterpretationComputational pathology tools aid accurate cellular attribution of molecular signals. This innovative design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of biomarkers for clinical use.FundingFunded by the NIHR Cambridge Biomedical Research Centre, the Medical Research Council, the Rosetrees and Stoneygate Trusts, and CRUK core grants. Non-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity. The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR. Seventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regulation processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192–5p and -194–5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is confirmed as a specific BE marker. Computational pathology tools aid accurate cellular attribution of molecular signals. This innovative design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of biomarkers for clinical use." @default.
- W4207046593 created "2022-01-26" @default.
- W4207046593 creator A5000956265 @default.
- W4207046593 creator A5003958988 @default.
- W4207046593 creator A5006199855 @default.
- W4207046593 creator A5012366489 @default.
- W4207046593 creator A5023972232 @default.
- W4207046593 creator A5035266560 @default.
- W4207046593 creator A5041206423 @default.
- W4207046593 creator A5051589747 @default.
- W4207046593 creator A5083151857 @default.
- W4207046593 date "2022-02-01" @default.
- W4207046593 modified "2023-10-18" @default.
- W4207046593 title "Computational pathology aids derivation of microRNA biomarker signals from Cytosponge samples" @default.
- W4207046593 cites W1989481544 @default.
- W4207046593 cites W1993916353 @default.
- W4207046593 cites W2012476860 @default.
- W4207046593 cites W2017426710 @default.
- W4207046593 cites W2020099187 @default.
- W4207046593 cites W2031010821 @default.
- W4207046593 cites W2041480814 @default.
- W4207046593 cites W2051570610 @default.
- W4207046593 cites W2054703855 @default.
- W4207046593 cites W2069935020 @default.
- W4207046593 cites W2089716260 @default.
- W4207046593 cites W2091483584 @default.
- W4207046593 cites W2092412751 @default.
- W4207046593 cites W2101656088 @default.
- W4207046593 cites W2108748826 @default.
- W4207046593 cites W2111791743 @default.
- W4207046593 cites W2120991684 @default.
- W4207046593 cites W2130979840 @default.
- W4207046593 cites W2141549067 @default.
- W4207046593 cites W2146483998 @default.
- W4207046593 cites W2156701212 @default.
- W4207046593 cites W2161179649 @default.
- W4207046593 cites W2162592909 @default.
- W4207046593 cites W2168290712 @default.
- W4207046593 cites W2175360882 @default.
- W4207046593 cites W2176846708 @default.
- W4207046593 cites W2339463099 @default.
- W4207046593 cites W2419062321 @default.
- W4207046593 cites W250468567 @default.
- W4207046593 cites W2550248106 @default.
- W4207046593 cites W2565838736 @default.
- W4207046593 cites W2748363179 @default.
- W4207046593 cites W2755924627 @default.
- W4207046593 cites W2766519221 @default.
- W4207046593 cites W2783020541 @default.
- W4207046593 cites W2784162035 @default.
- W4207046593 cites W2802431934 @default.
- W4207046593 cites W2806309378 @default.
- W4207046593 cites W2808151820 @default.
- W4207046593 cites W2883283451 @default.
- W4207046593 cites W2885412823 @default.
- W4207046593 cites W2900569176 @default.
- W4207046593 cites W2994705325 @default.
- W4207046593 cites W2995565038 @default.
- W4207046593 cites W3004075535 @default.
- W4207046593 cites W3012111622 @default.
- W4207046593 cites W3035929268 @default.
- W4207046593 cites W3046326116 @default.
- W4207046593 cites W3092071943 @default.
- W4207046593 cites W3094159415 @default.
- W4207046593 cites W3115672335 @default.
- W4207046593 cites W3152926200 @default.
- W4207046593 cites W3165688862 @default.
- W4207046593 doi "https://doi.org/10.1016/j.ebiom.2022.103814" @default.
- W4207046593 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35051729" @default.
- W4207046593 hasPublicationYear "2022" @default.
- W4207046593 type Work @default.
- W4207046593 citedByCount "0" @default.
- W4207046593 crossrefType "journal-article" @default.
- W4207046593 hasAuthorship W4207046593A5000956265 @default.
- W4207046593 hasAuthorship W4207046593A5003958988 @default.
- W4207046593 hasAuthorship W4207046593A5006199855 @default.
- W4207046593 hasAuthorship W4207046593A5012366489 @default.
- W4207046593 hasAuthorship W4207046593A5023972232 @default.
- W4207046593 hasAuthorship W4207046593A5035266560 @default.
- W4207046593 hasAuthorship W4207046593A5041206423 @default.
- W4207046593 hasAuthorship W4207046593A5051589747 @default.
- W4207046593 hasAuthorship W4207046593A5083151857 @default.
- W4207046593 hasBestOaLocation W42070465933 @default.
- W4207046593 hasConcept C104317684 @default.
- W4207046593 hasConcept C121608353 @default.
- W4207046593 hasConcept C124535831 @default.
- W4207046593 hasConcept C126322002 @default.
- W4207046593 hasConcept C142724271 @default.
- W4207046593 hasConcept C145059251 @default.
- W4207046593 hasConcept C2777002142 @default.
- W4207046593 hasConcept C2781188995 @default.
- W4207046593 hasConcept C2781197716 @default.
- W4207046593 hasConcept C46111723 @default.
- W4207046593 hasConcept C54355233 @default.
- W4207046593 hasConcept C60644358 @default.
- W4207046593 hasConcept C70721500 @default.
- W4207046593 hasConcept C71924100 @default.
- W4207046593 hasConcept C86803240 @default.