Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207047650> ?p ?o ?g. }
- W4207047650 endingPage "132" @default.
- W4207047650 startingPage "132" @default.
- W4207047650 abstract "DNA is a molecular target for the treatment of several diseases, including cancer, but there are few docking methodologies exploring the interactions between nucleic acids with DNA intercalating agents. Different docking methodologies, such as AutoDock Vina, DOCK 6, and Consensus, implemented into Molecular Architect (MolAr), were evaluated for their ability to analyze those interactions, considering visual inspection, redocking, and ROC curve. Ligands were refined by Parametric Method 7 (PM7), and ligands and decoys were docked into the minor DNA groove (PDB code: 1VZK). As a result, the area under the ROC curve (AUC-ROC) was 0.98, 0.88, and 0.99 for AutoDock Vina, DOCK 6, and Consensus methodologies, respectively. In addition, we proposed a machine learning model to determine the experimental ∆Tm value, which found a 0.84 R2 score. Finally, the selected ligands mono imidazole lexitropsin (42), netropsin (45), and N,N'-(1H-pyrrole-2,5-diyldi-4,1-phenylene)dibenzenecarboximidamide (51) were submitted to Molecular Dynamic Simulations (MD) through NAMD software to evaluate their equilibrium binding pose into the groove. In conclusion, the use of MolAr improves the docking results obtained with other methodologies, is a suitable methodology to use in the DNA system and was proven to be a valuable tool to estimate the ∆Tm experimental values of DNA intercalating agents." @default.
- W4207047650 created "2022-01-26" @default.
- W4207047650 creator A5004492454 @default.
- W4207047650 creator A5014780974 @default.
- W4207047650 creator A5023904997 @default.
- W4207047650 creator A5029857893 @default.
- W4207047650 creator A5041099846 @default.
- W4207047650 creator A5060059827 @default.
- W4207047650 creator A5064121334 @default.
- W4207047650 date "2022-01-22" @default.
- W4207047650 modified "2023-10-15" @default.
- W4207047650 title "Evaluation of Docking Machine Learning and Molecular Dynamics Methodologies for DNA-Ligand Systems" @default.
- W4207047650 cites W1181829556 @default.
- W4207047650 cites W1605578858 @default.
- W4207047650 cites W1678356000 @default.
- W4207047650 cites W1966851289 @default.
- W4207047650 cites W1968319881 @default.
- W4207047650 cites W1970618622 @default.
- W4207047650 cites W1974030600 @default.
- W4207047650 cites W1976499671 @default.
- W4207047650 cites W1985588649 @default.
- W4207047650 cites W1993147546 @default.
- W4207047650 cites W1996075279 @default.
- W4207047650 cites W1997728867 @default.
- W4207047650 cites W2014952106 @default.
- W4207047650 cites W2029667189 @default.
- W4207047650 cites W2032084435 @default.
- W4207047650 cites W2038758364 @default.
- W4207047650 cites W2042572511 @default.
- W4207047650 cites W2050456292 @default.
- W4207047650 cites W2062378498 @default.
- W4207047650 cites W2071658986 @default.
- W4207047650 cites W2081159460 @default.
- W4207047650 cites W2091260212 @default.
- W4207047650 cites W2093084777 @default.
- W4207047650 cites W2103945336 @default.
- W4207047650 cites W2105885962 @default.
- W4207047650 cites W2126052291 @default.
- W4207047650 cites W2132629607 @default.
- W4207047650 cites W2134967712 @default.
- W4207047650 cites W2138825634 @default.
- W4207047650 cites W2150981663 @default.
- W4207047650 cites W2156053468 @default.
- W4207047650 cites W2158360182 @default.
- W4207047650 cites W2509519298 @default.
- W4207047650 cites W2584612193 @default.
- W4207047650 cites W2737269224 @default.
- W4207047650 cites W2791355014 @default.
- W4207047650 cites W2800944244 @default.
- W4207047650 cites W2804466410 @default.
- W4207047650 cites W2911964244 @default.
- W4207047650 cites W2954083408 @default.
- W4207047650 cites W3012550622 @default.
- W4207047650 cites W4240294902 @default.
- W4207047650 doi "https://doi.org/10.3390/ph15020132" @default.
- W4207047650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35215245" @default.
- W4207047650 hasPublicationYear "2022" @default.
- W4207047650 type Work @default.
- W4207047650 citedByCount "4" @default.
- W4207047650 countsByYear W42070476502022 @default.
- W4207047650 countsByYear W42070476502023 @default.
- W4207047650 crossrefType "journal-article" @default.
- W4207047650 hasAuthorship W4207047650A5004492454 @default.
- W4207047650 hasAuthorship W4207047650A5014780974 @default.
- W4207047650 hasAuthorship W4207047650A5023904997 @default.
- W4207047650 hasAuthorship W4207047650A5029857893 @default.
- W4207047650 hasAuthorship W4207047650A5041099846 @default.
- W4207047650 hasAuthorship W4207047650A5060059827 @default.
- W4207047650 hasAuthorship W4207047650A5064121334 @default.
- W4207047650 hasBestOaLocation W42070476501 @default.
- W4207047650 hasConcept C103697762 @default.
- W4207047650 hasConcept C104317684 @default.
- W4207047650 hasConcept C147597530 @default.
- W4207047650 hasConcept C185592680 @default.
- W4207047650 hasConcept C2775905019 @default.
- W4207047650 hasConcept C2780152424 @default.
- W4207047650 hasConcept C41008148 @default.
- W4207047650 hasConcept C41685203 @default.
- W4207047650 hasConcept C42972112 @default.
- W4207047650 hasConcept C55493867 @default.
- W4207047650 hasConcept C59593255 @default.
- W4207047650 hasConcept C70721500 @default.
- W4207047650 hasConcept C71924100 @default.
- W4207047650 hasConcept C86803240 @default.
- W4207047650 hasConcept C93073132 @default.
- W4207047650 hasConceptScore W4207047650C103697762 @default.
- W4207047650 hasConceptScore W4207047650C104317684 @default.
- W4207047650 hasConceptScore W4207047650C147597530 @default.
- W4207047650 hasConceptScore W4207047650C185592680 @default.
- W4207047650 hasConceptScore W4207047650C2775905019 @default.
- W4207047650 hasConceptScore W4207047650C2780152424 @default.
- W4207047650 hasConceptScore W4207047650C41008148 @default.
- W4207047650 hasConceptScore W4207047650C41685203 @default.
- W4207047650 hasConceptScore W4207047650C42972112 @default.
- W4207047650 hasConceptScore W4207047650C55493867 @default.
- W4207047650 hasConceptScore W4207047650C59593255 @default.
- W4207047650 hasConceptScore W4207047650C70721500 @default.
- W4207047650 hasConceptScore W4207047650C71924100 @default.