Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207047994> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4207047994 endingPage "20" @default.
- W4207047994 startingPage "1" @default.
- W4207047994 abstract "Two-dimensional 1 arrays of bi-component structures made of cobalt and permalloy elliptical dots with thickness of 25 nm, length 1 mm and width of 225 nm, have been prepared by a self-aligned shadow deposition technique. Brillouin light scattering has been exploited to study the frequency dependence of thermally excited magnetic eigenmodes on the intensity of the external magnetic field, applied along the easy axis of the elements. This study aims to enhance the security for people's health, improve the medical level further, and increase the confidentiality of people's privacy information. Under the trend of wide application of deep learning algorithms, the convolutional neural network (CNN) is modified to build an interactive smart healthcare prediction and evaluation model (SHPE model) based on the deep learning model. The model is optimized and standardized for data processing. Then, the constructed model is simulated to analyze its performance. The results show that accuracy of the constructed system reaches 82.4%, which is at least 2.4% higher than other advanced CNN algorithms and 3.3% higher than other classical machine algorithms. It is proved based on comparison that the accuracy, precision, recall, and F1 of the constructed model are the highest. Further analysis on error shows that the constructed model shows the smallest error of 23.34 pixels. Therefore, it is proved that the built SHPE model shows higher prediction accuracy and smaller error while ensuring the safety performance, which provides an experimental reference for the prediction and evaluation of smart healthcare treatment in the later stage." @default.
- W4207047994 created "2022-01-26" @default.
- W4207047994 creator A5021542270 @default.
- W4207047994 creator A5039265818 @default.
- W4207047994 creator A5066812191 @default.
- W4207047994 creator A5089407824 @default.
- W4207047994 date "2022-01-25" @default.
- W4207047994 modified "2023-10-06" @default.
- W4207047994 title "Deep Learning-based Smart Predictive Evaluation for Interactive Multimedia-enabled Smart Healthcare" @default.
- W4207047994 cites W2467570466 @default.
- W4207047994 cites W2524898498 @default.
- W4207047994 cites W2608231518 @default.
- W4207047994 cites W2733384076 @default.
- W4207047994 cites W2745723384 @default.
- W4207047994 cites W2765854388 @default.
- W4207047994 cites W2767734009 @default.
- W4207047994 cites W2769507557 @default.
- W4207047994 cites W2774270830 @default.
- W4207047994 cites W2784039032 @default.
- W4207047994 cites W2784246882 @default.
- W4207047994 cites W2793486043 @default.
- W4207047994 cites W2796442970 @default.
- W4207047994 cites W2806887204 @default.
- W4207047994 cites W2884392922 @default.
- W4207047994 cites W2887975519 @default.
- W4207047994 cites W2896446456 @default.
- W4207047994 cites W2907760128 @default.
- W4207047994 cites W2913682694 @default.
- W4207047994 cites W2914984468 @default.
- W4207047994 cites W2915811296 @default.
- W4207047994 cites W2916238263 @default.
- W4207047994 cites W2921015455 @default.
- W4207047994 cites W2928726480 @default.
- W4207047994 cites W2934625602 @default.
- W4207047994 cites W2940487144 @default.
- W4207047994 cites W2946774101 @default.
- W4207047994 cites W2947607756 @default.
- W4207047994 cites W2965022726 @default.
- W4207047994 cites W2998872171 @default.
- W4207047994 cites W3003174479 @default.
- W4207047994 cites W3034560014 @default.
- W4207047994 cites W3042076285 @default.
- W4207047994 cites W3045941889 @default.
- W4207047994 cites W3049131298 @default.
- W4207047994 cites W3049405423 @default.
- W4207047994 cites W3105650387 @default.
- W4207047994 doi "https://doi.org/10.1145/3468506" @default.
- W4207047994 hasPublicationYear "2022" @default.
- W4207047994 type Work @default.
- W4207047994 citedByCount "43" @default.
- W4207047994 countsByYear W42070479942022 @default.
- W4207047994 countsByYear W42070479942023 @default.
- W4207047994 crossrefType "journal-article" @default.
- W4207047994 hasAuthorship W4207047994A5021542270 @default.
- W4207047994 hasAuthorship W4207047994A5039265818 @default.
- W4207047994 hasAuthorship W4207047994A5066812191 @default.
- W4207047994 hasAuthorship W4207047994A5089407824 @default.
- W4207047994 hasConcept C108583219 @default.
- W4207047994 hasConcept C113775141 @default.
- W4207047994 hasConcept C11413529 @default.
- W4207047994 hasConcept C117797892 @default.
- W4207047994 hasConcept C119857082 @default.
- W4207047994 hasConcept C154945302 @default.
- W4207047994 hasConcept C15744967 @default.
- W4207047994 hasConcept C41008148 @default.
- W4207047994 hasConcept C542102704 @default.
- W4207047994 hasConcept C81363708 @default.
- W4207047994 hasConceptScore W4207047994C108583219 @default.
- W4207047994 hasConceptScore W4207047994C113775141 @default.
- W4207047994 hasConceptScore W4207047994C11413529 @default.
- W4207047994 hasConceptScore W4207047994C117797892 @default.
- W4207047994 hasConceptScore W4207047994C119857082 @default.
- W4207047994 hasConceptScore W4207047994C154945302 @default.
- W4207047994 hasConceptScore W4207047994C15744967 @default.
- W4207047994 hasConceptScore W4207047994C41008148 @default.
- W4207047994 hasConceptScore W4207047994C542102704 @default.
- W4207047994 hasConceptScore W4207047994C81363708 @default.
- W4207047994 hasFunder F4320321001 @default.
- W4207047994 hasIssue "1s" @default.
- W4207047994 hasLocation W42070479941 @default.
- W4207047994 hasOpenAccess W4207047994 @default.
- W4207047994 hasPrimaryLocation W42070479941 @default.
- W4207047994 hasRelatedWork W2731899572 @default.
- W4207047994 hasRelatedWork W2999805992 @default.
- W4207047994 hasRelatedWork W3116150086 @default.
- W4207047994 hasRelatedWork W3133861977 @default.
- W4207047994 hasRelatedWork W4200173597 @default.
- W4207047994 hasRelatedWork W4223943233 @default.
- W4207047994 hasRelatedWork W4291897433 @default.
- W4207047994 hasRelatedWork W4312417841 @default.
- W4207047994 hasRelatedWork W4321369474 @default.
- W4207047994 hasRelatedWork W4380075502 @default.
- W4207047994 hasVolume "18" @default.
- W4207047994 isParatext "false" @default.
- W4207047994 isRetracted "false" @default.
- W4207047994 workType "article" @default.