Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207048092> ?p ?o ?g. }
- W4207048092 endingPage "22" @default.
- W4207048092 startingPage "1" @default.
- W4207048092 abstract "Subset Sumand k -SAT are two of the most extensively studied problems in computer science, and conjectures about their hardness are among the cornerstones of fine-grained complexity. An important open problem in this area is to base the hardness of one of these problems on the other. Our main result is a tight reduction from k -SAT to Subset Sum on dense instances, proving that Bellman’s 1962 pseudo-polynomial O * ( T )-time algorithm for Subset Sum on n numbers and target T cannot be improved to time T 1-ε · 2 o(n) for any ε > 0, unless the Strong Exponential Time Hypothesis (SETH) fails. As a corollary, we prove a “Direct-OR” theorem for Subset Sum under SETH, offering a new tool for proving conditional lower bounds: It is now possible to assume that deciding whether one out of N given instances of Subset Sum is a YES instance requires time ( N T ) 1-o(1) . As an application of this corollary, we prove a tight SETH-based lower bound for the classical Bicriteria s,t -Path problem, which is extensively studied in Operations Research. We separate its complexity from that of Subset Sum: On graphs with m edges and edge lengths bounded by L , we show that the O ( Lm ) pseudo-polynomial time algorithm by Joksch from 1966 cannot be improved to Õ( L + m ), in contrast to a recent improvement for Subset Sum (Bringmann, SODA 2017)." @default.
- W4207048092 created "2022-01-26" @default.
- W4207048092 creator A5032224171 @default.
- W4207048092 creator A5044394587 @default.
- W4207048092 creator A5051832024 @default.
- W4207048092 creator A5052950579 @default.
- W4207048092 date "2022-01-23" @default.
- W4207048092 modified "2023-09-24" @default.
- W4207048092 title "SETH-based Lower Bounds for Subset Sum and Bicriteria Path" @default.
- W4207048092 cites W119169328 @default.
- W4207048092 cites W1480447816 @default.
- W4207048092 cites W1576180980 @default.
- W4207048092 cites W15998695 @default.
- W4207048092 cites W1601907744 @default.
- W4207048092 cites W1631436345 @default.
- W4207048092 cites W1764956874 @default.
- W4207048092 cites W1814243895 @default.
- W4207048092 cites W1856875316 @default.
- W4207048092 cites W1909155726 @default.
- W4207048092 cites W1973046087 @default.
- W4207048092 cites W1973745435 @default.
- W4207048092 cites W1977946998 @default.
- W4207048092 cites W1979740015 @default.
- W4207048092 cites W1985572324 @default.
- W4207048092 cites W1993371203 @default.
- W4207048092 cites W1995725694 @default.
- W4207048092 cites W1999145171 @default.
- W4207048092 cites W2012632515 @default.
- W4207048092 cites W2020804547 @default.
- W4207048092 cites W2023600080 @default.
- W4207048092 cites W2031683606 @default.
- W4207048092 cites W2041171215 @default.
- W4207048092 cites W2044474025 @default.
- W4207048092 cites W2045492613 @default.
- W4207048092 cites W2047489708 @default.
- W4207048092 cites W2048068744 @default.
- W4207048092 cites W2049136377 @default.
- W4207048092 cites W2049647076 @default.
- W4207048092 cites W2052229697 @default.
- W4207048092 cites W2055693471 @default.
- W4207048092 cites W2058258808 @default.
- W4207048092 cites W2058479406 @default.
- W4207048092 cites W2061701207 @default.
- W4207048092 cites W2063525042 @default.
- W4207048092 cites W2066047491 @default.
- W4207048092 cites W2074117023 @default.
- W4207048092 cites W2074196013 @default.
- W4207048092 cites W2076643326 @default.
- W4207048092 cites W2079401865 @default.
- W4207048092 cites W2084732238 @default.
- W4207048092 cites W2087964954 @default.
- W4207048092 cites W2091376812 @default.
- W4207048092 cites W2098207812 @default.
- W4207048092 cites W2106287110 @default.
- W4207048092 cites W2109797885 @default.
- W4207048092 cites W2119461694 @default.
- W4207048092 cites W2121770144 @default.
- W4207048092 cites W2123222030 @default.
- W4207048092 cites W2125990029 @default.
- W4207048092 cites W2127172809 @default.
- W4207048092 cites W2130626677 @default.
- W4207048092 cites W2131559541 @default.
- W4207048092 cites W2134863191 @default.
- W4207048092 cites W2142247058 @default.
- W4207048092 cites W2146507303 @default.
- W4207048092 cites W2159892713 @default.
- W4207048092 cites W2161201881 @default.
- W4207048092 cites W2163288566 @default.
- W4207048092 cites W2164920129 @default.
- W4207048092 cites W2168336253 @default.
- W4207048092 cites W2169511809 @default.
- W4207048092 cites W2178031965 @default.
- W4207048092 cites W2207058206 @default.
- W4207048092 cites W2226187912 @default.
- W4207048092 cites W2227069303 @default.
- W4207048092 cites W2252401345 @default.
- W4207048092 cites W2264676752 @default.
- W4207048092 cites W2280590529 @default.
- W4207048092 cites W2290722161 @default.
- W4207048092 cites W2294619171 @default.
- W4207048092 cites W2296148711 @default.
- W4207048092 cites W2401610261 @default.
- W4207048092 cites W2401929940 @default.
- W4207048092 cites W2547063853 @default.
- W4207048092 cites W2625217561 @default.
- W4207048092 cites W2626471773 @default.
- W4207048092 cites W2884439552 @default.
- W4207048092 cites W2945020291 @default.
- W4207048092 cites W2949628502 @default.
- W4207048092 cites W2949871485 @default.
- W4207048092 cites W2951007762 @default.
- W4207048092 cites W2963208902 @default.
- W4207048092 cites W2963340918 @default.
- W4207048092 cites W2964091527 @default.
- W4207048092 cites W3037975911 @default.
- W4207048092 cites W3137429815 @default.
- W4207048092 cites W4205426033 @default.
- W4207048092 cites W4213071546 @default.