Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207050208> ?p ?o ?g. }
- W4207050208 endingPage "e0259877" @default.
- W4207050208 startingPage "e0259877" @default.
- W4207050208 abstract "The shape of phylogenetic trees can be used to gain evolutionary insights. A tree’s shape specifies the connectivity of a tree, while its branch lengths reflect either the time or genetic distance between branching events; well-known measures of tree shape include the Colless and Sackin imbalance, which describe the asymmetry of a tree. In other contexts, network science has become an important paradigm for describing structural features of networks and using them to understand complex systems, ranging from protein interactions to social systems. Network science is thus a potential source of many novel ways to characterize tree shape, as trees are also networks. Here, we tailor tools from network science, including diameter, average path length, and betweenness, closeness, and eigenvector centrality, to summarize phylogenetic tree shapes. We thereby propose tree shape summaries that are complementary to both asymmetry and the frequencies of small configurations. These new statistics can be computed in linear time and scale well to describe the shapes of large trees. We apply these statistics, alongside some conventional tree statistics, to phylogenetic trees from three very different viruses (HIV, dengue fever and measles), from the same virus in different epidemiological scenarios (influenza A and HIV) and from simulation models known to produce trees with different shapes. Using mutual information and supervised learning algorithms, we find that the statistics adapted from network science perform as well as or better than conventional statistics. We describe their distributions and prove some basic results about their extreme values in a tree. We conclude that network science-based tree shape summaries are a promising addition to the toolkit of tree shape features. All our shape summaries, as well as functions to select the most discriminating ones for two sets of trees, are freely available as an R package at http://github.com/Leonardini/treeCentrality ." @default.
- W4207050208 created "2022-01-26" @default.
- W4207050208 creator A5063239632 @default.
- W4207050208 creator A5065939739 @default.
- W4207050208 creator A5085759195 @default.
- W4207050208 creator A5091754800 @default.
- W4207050208 date "2021-12-23" @default.
- W4207050208 modified "2023-10-01" @default.
- W4207050208 title "Network science inspires novel tree shape statistics" @default.
- W4207050208 cites W1576649281 @default.
- W4207050208 cites W1788575275 @default.
- W4207050208 cites W1965175390 @default.
- W4207050208 cites W1968393777 @default.
- W4207050208 cites W1972978214 @default.
- W4207050208 cites W1973194611 @default.
- W4207050208 cites W1974439071 @default.
- W4207050208 cites W1983345514 @default.
- W4207050208 cites W1995813646 @default.
- W4207050208 cites W2006961590 @default.
- W4207050208 cites W2012150214 @default.
- W4207050208 cites W2033003937 @default.
- W4207050208 cites W2043873340 @default.
- W4207050208 cites W2048405441 @default.
- W4207050208 cites W2066362775 @default.
- W4207050208 cites W2069016054 @default.
- W4207050208 cites W2070519435 @default.
- W4207050208 cites W2079793951 @default.
- W4207050208 cites W2096665602 @default.
- W4207050208 cites W2097487570 @default.
- W4207050208 cites W2098062910 @default.
- W4207050208 cites W2100378151 @default.
- W4207050208 cites W2114369768 @default.
- W4207050208 cites W2124445766 @default.
- W4207050208 cites W2126991391 @default.
- W4207050208 cites W2127774996 @default.
- W4207050208 cites W2129505888 @default.
- W4207050208 cites W2141052558 @default.
- W4207050208 cites W2142773663 @default.
- W4207050208 cites W2148294135 @default.
- W4207050208 cites W2151409320 @default.
- W4207050208 cites W2164787828 @default.
- W4207050208 cites W2167463046 @default.
- W4207050208 cites W2167696643 @default.
- W4207050208 cites W2168181417 @default.
- W4207050208 cites W2169462417 @default.
- W4207050208 cites W2171707538 @default.
- W4207050208 cites W2221838748 @default.
- W4207050208 cites W2295695614 @default.
- W4207050208 cites W2314329059 @default.
- W4207050208 cites W2321649768 @default.
- W4207050208 cites W2331613197 @default.
- W4207050208 cites W2336400828 @default.
- W4207050208 cites W2587569733 @default.
- W4207050208 cites W2592171814 @default.
- W4207050208 cites W2598532836 @default.
- W4207050208 cites W2729689113 @default.
- W4207050208 cites W2763425794 @default.
- W4207050208 cites W2950407147 @default.
- W4207050208 cites W2952902141 @default.
- W4207050208 cites W3082387069 @default.
- W4207050208 cites W4233208878 @default.
- W4207050208 cites W4238452917 @default.
- W4207050208 cites W4238591275 @default.
- W4207050208 cites W4242155594 @default.
- W4207050208 cites W4247470631 @default.
- W4207050208 cites W4251079740 @default.
- W4207050208 doi "https://doi.org/10.1371/journal.pone.0259877" @default.
- W4207050208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34941890" @default.
- W4207050208 hasPublicationYear "2021" @default.
- W4207050208 type Work @default.
- W4207050208 citedByCount "4" @default.
- W4207050208 countsByYear W42070502082022 @default.
- W4207050208 countsByYear W42070502082023 @default.
- W4207050208 crossrefType "journal-article" @default.
- W4207050208 hasAuthorship W4207050208A5063239632 @default.
- W4207050208 hasAuthorship W4207050208A5065939739 @default.
- W4207050208 hasAuthorship W4207050208A5085759195 @default.
- W4207050208 hasAuthorship W4207050208A5091754800 @default.
- W4207050208 hasBestOaLocation W42070502081 @default.
- W4207050208 hasConcept C104317684 @default.
- W4207050208 hasConcept C105795698 @default.
- W4207050208 hasConcept C113174947 @default.
- W4207050208 hasConcept C114614502 @default.
- W4207050208 hasConcept C119857082 @default.
- W4207050208 hasConcept C154945302 @default.
- W4207050208 hasConcept C193252679 @default.
- W4207050208 hasConcept C33923547 @default.
- W4207050208 hasConcept C41008148 @default.
- W4207050208 hasConcept C53811970 @default.
- W4207050208 hasConcept C55493867 @default.
- W4207050208 hasConcept C86803240 @default.
- W4207050208 hasConceptScore W4207050208C104317684 @default.
- W4207050208 hasConceptScore W4207050208C105795698 @default.
- W4207050208 hasConceptScore W4207050208C113174947 @default.
- W4207050208 hasConceptScore W4207050208C114614502 @default.
- W4207050208 hasConceptScore W4207050208C119857082 @default.
- W4207050208 hasConceptScore W4207050208C154945302 @default.
- W4207050208 hasConceptScore W4207050208C193252679 @default.