Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207053154> ?p ?o ?g. }
- W4207053154 endingPage "108256" @default.
- W4207053154 startingPage "108256" @default.
- W4207053154 abstract "The task of multi-label feature selection (MLFS) is to reduce redundant information and generate the optimal feature subset from the original multi-label data. A variety of MLFS methods utilize pseudo-label matrix to explore label correlations for identifying the most informative features. Moreover, some methods consider feature redundancy by virtue of information theory technique, but no prior literature unites them in a framework to perform feature selection. To remedy the deficiency, we propose a novel MLFS method based on label correlations and feature redundancy, namely LFFS. To be specific, we first utilize the ridge regression to create a feature selection matrix and a low dimensional embedding, and impose ℓ2,1-norm on the feature selection matrix. Then, the low-dimensional embedding is devoted to mine label correlations, which can keep the global and local structure of original label space. Finally, cosine similarity is employed to analyze feature redundancy, so as to generate a low redundancy feature subset. By virtue of the above process, we design an objective function followed with an optimization solution. Comprehensive experiments results demonstrate the effectiveness and superiority of the proposed method LFFS among ten competition methods." @default.
- W4207053154 created "2022-01-26" @default.
- W4207053154 creator A5017219315 @default.
- W4207053154 creator A5028752845 @default.
- W4207053154 creator A5058651829 @default.
- W4207053154 creator A5068574908 @default.
- W4207053154 creator A5078838575 @default.
- W4207053154 creator A5089470742 @default.
- W4207053154 date "2022-04-01" @default.
- W4207053154 modified "2023-09-25" @default.
- W4207053154 title "Multi-label feature selection based on label correlations and feature redundancy" @default.
- W4207053154 cites W1498305593 @default.
- W4207053154 cites W1870686808 @default.
- W4207053154 cites W1970696760 @default.
- W4207053154 cites W1972401983 @default.
- W4207053154 cites W2007972815 @default.
- W4207053154 cites W2022604610 @default.
- W4207053154 cites W2029517229 @default.
- W4207053154 cites W2052684427 @default.
- W4207053154 cites W2082417656 @default.
- W4207053154 cites W2083488428 @default.
- W4207053154 cites W2086465730 @default.
- W4207053154 cites W2096776111 @default.
- W4207053154 cites W2114315281 @default.
- W4207053154 cites W2123217057 @default.
- W4207053154 cites W2128873747 @default.
- W4207053154 cites W2132139283 @default.
- W4207053154 cites W2153677638 @default.
- W4207053154 cites W2156935079 @default.
- W4207053154 cites W2162280103 @default.
- W4207053154 cites W2164308541 @default.
- W4207053154 cites W2253239179 @default.
- W4207053154 cites W2292274018 @default.
- W4207053154 cites W2507677290 @default.
- W4207053154 cites W2569112930 @default.
- W4207053154 cites W2587763057 @default.
- W4207053154 cites W2594455805 @default.
- W4207053154 cites W2767860539 @default.
- W4207053154 cites W2772296919 @default.
- W4207053154 cites W2887527983 @default.
- W4207053154 cites W2888781447 @default.
- W4207053154 cites W2894278606 @default.
- W4207053154 cites W2898240335 @default.
- W4207053154 cites W2926842391 @default.
- W4207053154 cites W2948768062 @default.
- W4207053154 cites W2948831026 @default.
- W4207053154 cites W2973358067 @default.
- W4207053154 cites W2992732987 @default.
- W4207053154 cites W2999681686 @default.
- W4207053154 cites W3000675402 @default.
- W4207053154 cites W3001675796 @default.
- W4207053154 cites W3013979704 @default.
- W4207053154 cites W3034775104 @default.
- W4207053154 cites W3034873226 @default.
- W4207053154 cites W3048654224 @default.
- W4207053154 cites W3083641663 @default.
- W4207053154 cites W3086768476 @default.
- W4207053154 cites W3110041358 @default.
- W4207053154 cites W3114688077 @default.
- W4207053154 cites W3131245832 @default.
- W4207053154 cites W3158381863 @default.
- W4207053154 cites W3179257852 @default.
- W4207053154 cites W3186062074 @default.
- W4207053154 cites W3186290349 @default.
- W4207053154 cites W636917482 @default.
- W4207053154 doi "https://doi.org/10.1016/j.knosys.2022.108256" @default.
- W4207053154 hasPublicationYear "2022" @default.
- W4207053154 type Work @default.
- W4207053154 citedByCount "19" @default.
- W4207053154 countsByYear W42070531542022 @default.
- W4207053154 countsByYear W42070531542023 @default.
- W4207053154 crossrefType "journal-article" @default.
- W4207053154 hasAuthorship W4207053154A5017219315 @default.
- W4207053154 hasAuthorship W4207053154A5028752845 @default.
- W4207053154 hasAuthorship W4207053154A5058651829 @default.
- W4207053154 hasAuthorship W4207053154A5068574908 @default.
- W4207053154 hasAuthorship W4207053154A5078838575 @default.
- W4207053154 hasAuthorship W4207053154A5089470742 @default.
- W4207053154 hasConcept C111919701 @default.
- W4207053154 hasConcept C124101348 @default.
- W4207053154 hasConcept C138885662 @default.
- W4207053154 hasConcept C148483581 @default.
- W4207053154 hasConcept C152124472 @default.
- W4207053154 hasConcept C153180895 @default.
- W4207053154 hasConcept C154945302 @default.
- W4207053154 hasConcept C16811321 @default.
- W4207053154 hasConcept C2776401178 @default.
- W4207053154 hasConcept C41008148 @default.
- W4207053154 hasConcept C41608201 @default.
- W4207053154 hasConcept C41895202 @default.
- W4207053154 hasConcept C70518039 @default.
- W4207053154 hasConceptScore W4207053154C111919701 @default.
- W4207053154 hasConceptScore W4207053154C124101348 @default.
- W4207053154 hasConceptScore W4207053154C138885662 @default.
- W4207053154 hasConceptScore W4207053154C148483581 @default.
- W4207053154 hasConceptScore W4207053154C152124472 @default.
- W4207053154 hasConceptScore W4207053154C153180895 @default.
- W4207053154 hasConceptScore W4207053154C154945302 @default.