Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207053642> ?p ?o ?g. }
- W4207053642 abstract "Abstract Axonal characterizations of connectomes in healthy and disease phenotypes are surprisingly incomplete and biased because unmyelinated axons, the most prevalent type of fibers in the nervous system, have largely been ignored as their quantitative assessment quickly becomes unmanageable as the number of axons increases. Herein, we introduce the first prototype of a high-throughput processing pipeline for automated segmentation of unmyelinated fibers. Our team has used transmission electron microscopy images of vagus and pelvic nerves in rats. All unmyelinated axons in these images are individually annotated and used as labeled data to train and validate a deep instance segmentation network. We investigate the effect of different training strategies on the overall segmentation accuracy of the network. We extensively validate the segmentation algorithm as a stand-alone segmentation tool as well as in an expert-in-the-loop hybrid segmentation setting with preliminary, albeit remarkably encouraging results. Our algorithm achieves an instance-level $$F_1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> score of between 0.7 and 0.9 on various test images in the stand-alone mode and reduces expert annotation labor by 80% in the hybrid setting. We hope that this new high-throughput segmentation pipeline will enable quick and accurate characterization of unmyelinated fibers at scale and become instrumental in significantly advancing our understanding of connectomes in both the peripheral and the central nervous systems." @default.
- W4207053642 created "2022-01-26" @default.
- W4207053642 creator A5018246682 @default.
- W4207053642 creator A5019684977 @default.
- W4207053642 creator A5032011568 @default.
- W4207053642 creator A5034713503 @default.
- W4207053642 creator A5044829141 @default.
- W4207053642 creator A5046295476 @default.
- W4207053642 creator A5052111167 @default.
- W4207053642 creator A5055045294 @default.
- W4207053642 creator A5067612292 @default.
- W4207053642 creator A5072372886 @default.
- W4207053642 date "2022-01-24" @default.
- W4207053642 modified "2023-10-09" @default.
- W4207053642 title "High-throughput segmentation of unmyelinated axons by deep learning" @default.
- W4207053642 cites W1513082520 @default.
- W4207053642 cites W1573650944 @default.
- W4207053642 cites W1607798596 @default.
- W4207053642 cites W1901129140 @default.
- W4207053642 cites W1975778063 @default.
- W4207053642 cites W1975847957 @default.
- W4207053642 cites W1986500821 @default.
- W4207053642 cites W1998508489 @default.
- W4207053642 cites W2001604501 @default.
- W4207053642 cites W2010792042 @default.
- W4207053642 cites W2017966457 @default.
- W4207053642 cites W2032101051 @default.
- W4207053642 cites W2037195043 @default.
- W4207053642 cites W2092322285 @default.
- W4207053642 cites W2126305855 @default.
- W4207053642 cites W2136049931 @default.
- W4207053642 cites W2167279371 @default.
- W4207053642 cites W2167776784 @default.
- W4207053642 cites W2222512263 @default.
- W4207053642 cites W2510908842 @default.
- W4207053642 cites W2599340422 @default.
- W4207053642 cites W2734349601 @default.
- W4207053642 cites W2760861884 @default.
- W4207053642 cites W2765232463 @default.
- W4207053642 cites W2767378564 @default.
- W4207053642 cites W2884436604 @default.
- W4207053642 cites W2900936384 @default.
- W4207053642 cites W2903257891 @default.
- W4207053642 cites W2903919837 @default.
- W4207053642 cites W2928133111 @default.
- W4207053642 cites W2946901414 @default.
- W4207053642 cites W2961912654 @default.
- W4207053642 cites W2962770929 @default.
- W4207053642 cites W2963351448 @default.
- W4207053642 cites W2963389298 @default.
- W4207053642 cites W2965828929 @default.
- W4207053642 cites W2980998394 @default.
- W4207053642 cites W2982268628 @default.
- W4207053642 cites W2996290406 @default.
- W4207053642 cites W2999219213 @default.
- W4207053642 cites W3007549840 @default.
- W4207053642 cites W3012082603 @default.
- W4207053642 cites W3043135743 @default.
- W4207053642 cites W3095110852 @default.
- W4207053642 cites W3111521801 @default.
- W4207053642 cites W3209872747 @default.
- W4207053642 cites W4240452198 @default.
- W4207053642 cites W4250310729 @default.
- W4207053642 doi "https://doi.org/10.1038/s41598-022-04854-3" @default.
- W4207053642 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35075171" @default.
- W4207053642 hasPublicationYear "2022" @default.
- W4207053642 type Work @default.
- W4207053642 citedByCount "6" @default.
- W4207053642 countsByYear W42070536422022 @default.
- W4207053642 countsByYear W42070536422023 @default.
- W4207053642 crossrefType "journal-article" @default.
- W4207053642 hasAuthorship W4207053642A5018246682 @default.
- W4207053642 hasAuthorship W4207053642A5019684977 @default.
- W4207053642 hasAuthorship W4207053642A5032011568 @default.
- W4207053642 hasAuthorship W4207053642A5034713503 @default.
- W4207053642 hasAuthorship W4207053642A5044829141 @default.
- W4207053642 hasAuthorship W4207053642A5046295476 @default.
- W4207053642 hasAuthorship W4207053642A5052111167 @default.
- W4207053642 hasAuthorship W4207053642A5055045294 @default.
- W4207053642 hasAuthorship W4207053642A5067612292 @default.
- W4207053642 hasAuthorship W4207053642A5072372886 @default.
- W4207053642 hasBestOaLocation W42070536421 @default.
- W4207053642 hasConcept C153180895 @default.
- W4207053642 hasConcept C154945302 @default.
- W4207053642 hasConcept C157764524 @default.
- W4207053642 hasConcept C169760540 @default.
- W4207053642 hasConcept C199360897 @default.
- W4207053642 hasConcept C3018011982 @default.
- W4207053642 hasConcept C41008148 @default.
- W4207053642 hasConcept C43521106 @default.
- W4207053642 hasConcept C45715564 @default.
- W4207053642 hasConcept C555944384 @default.
- W4207053642 hasConcept C76155785 @default.
- W4207053642 hasConcept C86803240 @default.
- W4207053642 hasConcept C89600930 @default.
- W4207053642 hasConcept C97820695 @default.
- W4207053642 hasConceptScore W4207053642C153180895 @default.
- W4207053642 hasConceptScore W4207053642C154945302 @default.
- W4207053642 hasConceptScore W4207053642C157764524 @default.
- W4207053642 hasConceptScore W4207053642C169760540 @default.