Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207058800> ?p ?o ?g. }
- W4207058800 endingPage "518" @default.
- W4207058800 startingPage "518" @default.
- W4207058800 abstract "Smallholder farmers depend on healthy and productive crop yields to sustain their socio-economic status and ensure livelihood security. Advances in South African precision agriculture in the form of unmanned aerial vehicles (UAVs) provide spatially explicit near-real-time information that can be used to assess crop dynamics and inform smallholder farmers. The use of UAVs with remote-sensing techniques allows for the acquisition of high spatial resolution data at various spatio-temporal planes, which is particularly useful at the scale of fields and farms. Specifically, crop chlorophyll content is assessed as it is one of the best known and reliable indicators of crop health, due to its biophysical pigment and biochemical processes that indicate plant productivity. In this regard, the study evaluated the utility of multispectral UAV imagery using the random forest machine learning algorithm to estimate the chlorophyll content of maize through the various growth stages. The results showed that the near-infrared and red-edge wavelength bands and vegetation indices derived from these wavelengths were essential for estimating chlorophyll content during the phenotyping of maize. Furthermore, the random forest model optimally estimated the chlorophyll content of maize over the various phenological stages. Particularly, maize chlorophyll was best predicted during the early reproductive, late vegetative, and early vegetative growth stages to RMSE accuracies of 40.4 µmol/m−2, 39 µmol/m−2, and 61.6 µmol/m−2, respectively. The least accurate chlorophyll content results were predicted during the mid-reproductive and late reproductive growth stages to RMSE accuracies of 66.6 µmol/m−2 and 69.6 µmol/m−2, respectively, as a consequence of a hailstorm. A resultant chlorophyll variation map of the maize growth stages captured the spatial heterogeneity of chlorophyll within the maize field. Therefore, the study’s findings demonstrate that the use of remotely sensed UAV imagery with a robust machine algorithm is a critical tool to support the decision-making and management in smallholder farms." @default.
- W4207058800 created "2022-01-26" @default.
- W4207058800 creator A5005970114 @default.
- W4207058800 creator A5011418849 @default.
- W4207058800 creator A5021108961 @default.
- W4207058800 creator A5054762323 @default.
- W4207058800 creator A5074391749 @default.
- W4207058800 creator A5091040816 @default.
- W4207058800 date "2022-01-21" @default.
- W4207058800 modified "2023-10-14" @default.
- W4207058800 title "Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems" @default.
- W4207058800 cites W1968198616 @default.
- W4207058800 cites W1973261010 @default.
- W4207058800 cites W1974286236 @default.
- W4207058800 cites W1980467157 @default.
- W4207058800 cites W1980477824 @default.
- W4207058800 cites W1985001246 @default.
- W4207058800 cites W1991260409 @default.
- W4207058800 cites W1992925847 @default.
- W4207058800 cites W1993512371 @default.
- W4207058800 cites W1993608482 @default.
- W4207058800 cites W2000613913 @default.
- W4207058800 cites W2002987700 @default.
- W4207058800 cites W2018627383 @default.
- W4207058800 cites W2020473914 @default.
- W4207058800 cites W2024574332 @default.
- W4207058800 cites W2024925469 @default.
- W4207058800 cites W2032199529 @default.
- W4207058800 cites W2034085189 @default.
- W4207058800 cites W2036259807 @default.
- W4207058800 cites W2049578769 @default.
- W4207058800 cites W2056352756 @default.
- W4207058800 cites W2057985612 @default.
- W4207058800 cites W2058155591 @default.
- W4207058800 cites W2058187437 @default.
- W4207058800 cites W2073878527 @default.
- W4207058800 cites W2074464158 @default.
- W4207058800 cites W2075844317 @default.
- W4207058800 cites W2077214952 @default.
- W4207058800 cites W2080441468 @default.
- W4207058800 cites W2081734510 @default.
- W4207058800 cites W2085545466 @default.
- W4207058800 cites W2090813587 @default.
- W4207058800 cites W2096531467 @default.
- W4207058800 cites W2104062561 @default.
- W4207058800 cites W2111327237 @default.
- W4207058800 cites W2115436074 @default.
- W4207058800 cites W2116058003 @default.
- W4207058800 cites W2129016611 @default.
- W4207058800 cites W2137608957 @default.
- W4207058800 cites W2150140969 @default.
- W4207058800 cites W2155939589 @default.
- W4207058800 cites W2163410149 @default.
- W4207058800 cites W2188115011 @default.
- W4207058800 cites W2192980509 @default.
- W4207058800 cites W2207083369 @default.
- W4207058800 cites W2340480861 @default.
- W4207058800 cites W2414975272 @default.
- W4207058800 cites W2470644244 @default.
- W4207058800 cites W2479938810 @default.
- W4207058800 cites W2565531507 @default.
- W4207058800 cites W2572077381 @default.
- W4207058800 cites W2591180974 @default.
- W4207058800 cites W2617056706 @default.
- W4207058800 cites W2618793309 @default.
- W4207058800 cites W2765901752 @default.
- W4207058800 cites W2770361611 @default.
- W4207058800 cites W2800354856 @default.
- W4207058800 cites W2800741685 @default.
- W4207058800 cites W2805379728 @default.
- W4207058800 cites W2904027073 @default.
- W4207058800 cites W2904957358 @default.
- W4207058800 cites W2913273664 @default.
- W4207058800 cites W2918084323 @default.
- W4207058800 cites W2945222626 @default.
- W4207058800 cites W2965157884 @default.
- W4207058800 cites W2969485242 @default.
- W4207058800 cites W2997988721 @default.
- W4207058800 cites W3001200744 @default.
- W4207058800 cites W3002884362 @default.
- W4207058800 cites W3007396174 @default.
- W4207058800 cites W3028263306 @default.
- W4207058800 cites W3032425401 @default.
- W4207058800 cites W3037080525 @default.
- W4207058800 cites W3038163067 @default.
- W4207058800 cites W3039984893 @default.
- W4207058800 cites W3048260957 @default.
- W4207058800 cites W3084417673 @default.
- W4207058800 cites W3088885014 @default.
- W4207058800 cites W3092600768 @default.
- W4207058800 cites W3103230033 @default.
- W4207058800 cites W3111203725 @default.
- W4207058800 cites W3134381243 @default.
- W4207058800 cites W3137017589 @default.
- W4207058800 cites W3179441103 @default.
- W4207058800 cites W3211403803 @default.
- W4207058800 cites W4248209499 @default.
- W4207058800 doi "https://doi.org/10.3390/rs14030518" @default.