Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207064851> ?p ?o ?g. }
- W4207064851 abstract "Abstract Effective and precise classification of breast cancer patients for their disease risks is critical to improve early diagnosis and patient survival. In the recent past, a significant amount of multi-omics data derived from cancer patients has emerged. However, a robust framework for integrating multi-omics data to subgroup cancer patients and predict survival prognosis is still lacking. In addition, effective therapeutic targets for treating breast cancer patients with poor prognoses are in dire need. To begin to resolve this difficulty, we developed and optimized a sophisticated deep learning-based model in breast cancer that can accurately stratify patients based on their prognosis. We built a survival-associated predictive framework integrating transcription profile, miRNA expression, somatic mutations, copy number variation, DNA methylation and protein expression. This framework achieved promising performance in distinguishing high-risk breast cancer patients from those with good prognoses. Furthermore, we constructed multiple fully connected neural networks that are trained on prioritized multi-omics signatures or even only potential single-omics signatures, based on our customized scoring system. Together, the landmark multi-omics signatures we identified may serve as potential therapeutic targets in breast cancer." @default.
- W4207064851 created "2022-01-26" @default.
- W4207064851 creator A5000344944 @default.
- W4207064851 creator A5063425934 @default.
- W4207064851 creator A5063496035 @default.
- W4207064851 creator A5084575671 @default.
- W4207064851 date "2022-01-21" @default.
- W4207064851 modified "2023-10-03" @default.
- W4207064851 title "Deep learning based on multi-omics integration identifies potential therapeutic targets in breast cancer" @default.
- W4207064851 cites W1483686978 @default.
- W4207064851 cites W1901129140 @default.
- W4207064851 cites W1967702193 @default.
- W4207064851 cites W1973433817 @default.
- W4207064851 cites W1987219048 @default.
- W4207064851 cites W2003769907 @default.
- W4207064851 cites W2016043834 @default.
- W4207064851 cites W2019771009 @default.
- W4207064851 cites W2020112232 @default.
- W4207064851 cites W2021501684 @default.
- W4207064851 cites W2030049178 @default.
- W4207064851 cites W2047620276 @default.
- W4207064851 cites W2049295438 @default.
- W4207064851 cites W2057197272 @default.
- W4207064851 cites W2067445322 @default.
- W4207064851 cites W2088338354 @default.
- W4207064851 cites W2093335403 @default.
- W4207064851 cites W2094815521 @default.
- W4207064851 cites W2106100979 @default.
- W4207064851 cites W2110578052 @default.
- W4207064851 cites W2143763498 @default.
- W4207064851 cites W2144212877 @default.
- W4207064851 cites W2159427817 @default.
- W4207064851 cites W2170368576 @default.
- W4207064851 cites W2170829292 @default.
- W4207064851 cites W2270016248 @default.
- W4207064851 cites W2464822550 @default.
- W4207064851 cites W2479945688 @default.
- W4207064851 cites W2502949459 @default.
- W4207064851 cites W2522182530 @default.
- W4207064851 cites W2531473348 @default.
- W4207064851 cites W2589411605 @default.
- W4207064851 cites W2613968849 @default.
- W4207064851 cites W2765219164 @default.
- W4207064851 cites W2805059242 @default.
- W4207064851 cites W2889149618 @default.
- W4207064851 cites W2889501576 @default.
- W4207064851 cites W2905840927 @default.
- W4207064851 cites W2913529616 @default.
- W4207064851 cites W2918618349 @default.
- W4207064851 cites W2919831875 @default.
- W4207064851 cites W2920197611 @default.
- W4207064851 cites W2928369482 @default.
- W4207064851 cites W2970254070 @default.
- W4207064851 cites W2977194337 @default.
- W4207064851 cites W2978853725 @default.
- W4207064851 cites W2979291688 @default.
- W4207064851 cites W2979361865 @default.
- W4207064851 cites W2985045684 @default.
- W4207064851 cites W2992066906 @default.
- W4207064851 cites W3034150292 @default.
- W4207064851 cites W3045334083 @default.
- W4207064851 cites W3047056765 @default.
- W4207064851 cites W3092545920 @default.
- W4207064851 cites W3138116002 @default.
- W4207064851 cites W624838065 @default.
- W4207064851 doi "https://doi.org/10.1101/2022.01.18.476842" @default.
- W4207064851 hasPublicationYear "2022" @default.
- W4207064851 type Work @default.
- W4207064851 citedByCount "3" @default.
- W4207064851 countsByYear W42070648512023 @default.
- W4207064851 crossrefType "posted-content" @default.
- W4207064851 hasAuthorship W4207064851A5000344944 @default.
- W4207064851 hasAuthorship W4207064851A5063425934 @default.
- W4207064851 hasAuthorship W4207064851A5063496035 @default.
- W4207064851 hasAuthorship W4207064851A5084575671 @default.
- W4207064851 hasBestOaLocation W42070648511 @default.
- W4207064851 hasConcept C104317684 @default.
- W4207064851 hasConcept C119857082 @default.
- W4207064851 hasConcept C121608353 @default.
- W4207064851 hasConcept C126322002 @default.
- W4207064851 hasConcept C142724271 @default.
- W4207064851 hasConcept C145059251 @default.
- W4207064851 hasConcept C150194340 @default.
- W4207064851 hasConcept C154945302 @default.
- W4207064851 hasConcept C157585117 @default.
- W4207064851 hasConcept C163763905 @default.
- W4207064851 hasConcept C190727270 @default.
- W4207064851 hasConcept C2779134260 @default.
- W4207064851 hasConcept C41008148 @default.
- W4207064851 hasConcept C530470458 @default.
- W4207064851 hasConcept C55493867 @default.
- W4207064851 hasConcept C60644358 @default.
- W4207064851 hasConcept C70721500 @default.
- W4207064851 hasConcept C71924100 @default.
- W4207064851 hasConcept C86803240 @default.
- W4207064851 hasConceptScore W4207064851C104317684 @default.
- W4207064851 hasConceptScore W4207064851C119857082 @default.
- W4207064851 hasConceptScore W4207064851C121608353 @default.
- W4207064851 hasConceptScore W4207064851C126322002 @default.
- W4207064851 hasConceptScore W4207064851C142724271 @default.