Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207065448> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4207065448 endingPage "749" @default.
- W4207065448 startingPage "749" @default.
- W4207065448 abstract "The noise pollution caused by urban substations is an increasingly serious problem, as is the issue of local residents being disturbed by substation noise. To accurately assess the degree of noise annoyance caused by substations to surrounding residents, we established a noise annoyance prediction model based on transfer learning and a convolution neural network. Using the model, we took the noise spectrum as the input, the subjective evaluation result as the target output, and the AlexNet network model with a modified output layer and corresponding parameters as the pre-training model. In a fixed learning rate and epoch setting, the influence of different mini-batch size values on the prediction accuracy of the model was compared and analyzed. The results showed that when the mini-batch size was set to 4, 8, 16, and 32, all the data sets had convergence after 90 iterations. The root mean square error (RMSE) of all validation sets was lower than 0.355, and the loss of all validation sets was lower than 0.067. As the mini-batch size increased, the RMSE, loss, and mean absolute error (MAE) of the verification set gradually increased, while the number of iterations and the training duration decreased gradually. In this test, a mini-batch size value of four was appropriate. The resultant convolutional neural network model showed high accuracy and robustness, and the error between the prediction result and the subjective evaluation result was between 2% and 7%. The model comprehensively reflects the objective metrics affecting subjective perception, and accurately describes the subjective perception of urban substation noise on human ears." @default.
- W4207065448 created "2022-01-26" @default.
- W4207065448 creator A5005310423 @default.
- W4207065448 creator A5009554650 @default.
- W4207065448 creator A5038843642 @default.
- W4207065448 creator A5050289918 @default.
- W4207065448 date "2022-01-20" @default.
- W4207065448 modified "2023-09-30" @default.
- W4207065448 title "Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network" @default.
- W4207065448 cites W1992102475 @default.
- W4207065448 cites W2006641403 @default.
- W4207065448 cites W2017334490 @default.
- W4207065448 cites W2104905286 @default.
- W4207065448 cites W2112796928 @default.
- W4207065448 cites W2154196445 @default.
- W4207065448 cites W2165698076 @default.
- W4207065448 cites W2216186251 @default.
- W4207065448 cites W2564194003 @default.
- W4207065448 cites W2618530766 @default.
- W4207065448 cites W3000426147 @default.
- W4207065448 cites W3037911826 @default.
- W4207065448 cites W3048881327 @default.
- W4207065448 cites W3089215229 @default.
- W4207065448 cites W3100321043 @default.
- W4207065448 cites W3164086652 @default.
- W4207065448 doi "https://doi.org/10.3390/en15030749" @default.
- W4207065448 hasPublicationYear "2022" @default.
- W4207065448 type Work @default.
- W4207065448 citedByCount "2" @default.
- W4207065448 countsByYear W42070654482022 @default.
- W4207065448 countsByYear W42070654482023 @default.
- W4207065448 crossrefType "journal-article" @default.
- W4207065448 hasAuthorship W4207065448A5005310423 @default.
- W4207065448 hasAuthorship W4207065448A5009554650 @default.
- W4207065448 hasAuthorship W4207065448A5038843642 @default.
- W4207065448 hasAuthorship W4207065448A5050289918 @default.
- W4207065448 hasBestOaLocation W42070654481 @default.
- W4207065448 hasConcept C104317684 @default.
- W4207065448 hasConcept C105795698 @default.
- W4207065448 hasConcept C11413529 @default.
- W4207065448 hasConcept C115961682 @default.
- W4207065448 hasConcept C127372701 @default.
- W4207065448 hasConcept C139945424 @default.
- W4207065448 hasConcept C153180895 @default.
- W4207065448 hasConcept C154945302 @default.
- W4207065448 hasConcept C160633673 @default.
- W4207065448 hasConcept C178937217 @default.
- W4207065448 hasConcept C185592680 @default.
- W4207065448 hasConcept C31972630 @default.
- W4207065448 hasConcept C33923547 @default.
- W4207065448 hasConcept C41008148 @default.
- W4207065448 hasConcept C50644808 @default.
- W4207065448 hasConcept C55493867 @default.
- W4207065448 hasConcept C63479239 @default.
- W4207065448 hasConcept C79018884 @default.
- W4207065448 hasConcept C81363708 @default.
- W4207065448 hasConcept C99498987 @default.
- W4207065448 hasConceptScore W4207065448C104317684 @default.
- W4207065448 hasConceptScore W4207065448C105795698 @default.
- W4207065448 hasConceptScore W4207065448C11413529 @default.
- W4207065448 hasConceptScore W4207065448C115961682 @default.
- W4207065448 hasConceptScore W4207065448C127372701 @default.
- W4207065448 hasConceptScore W4207065448C139945424 @default.
- W4207065448 hasConceptScore W4207065448C153180895 @default.
- W4207065448 hasConceptScore W4207065448C154945302 @default.
- W4207065448 hasConceptScore W4207065448C160633673 @default.
- W4207065448 hasConceptScore W4207065448C178937217 @default.
- W4207065448 hasConceptScore W4207065448C185592680 @default.
- W4207065448 hasConceptScore W4207065448C31972630 @default.
- W4207065448 hasConceptScore W4207065448C33923547 @default.
- W4207065448 hasConceptScore W4207065448C41008148 @default.
- W4207065448 hasConceptScore W4207065448C50644808 @default.
- W4207065448 hasConceptScore W4207065448C55493867 @default.
- W4207065448 hasConceptScore W4207065448C63479239 @default.
- W4207065448 hasConceptScore W4207065448C79018884 @default.
- W4207065448 hasConceptScore W4207065448C81363708 @default.
- W4207065448 hasConceptScore W4207065448C99498987 @default.
- W4207065448 hasIssue "3" @default.
- W4207065448 hasLocation W42070654481 @default.
- W4207065448 hasOpenAccess W4207065448 @default.
- W4207065448 hasPrimaryLocation W42070654481 @default.
- W4207065448 hasRelatedWork W1972245065 @default.
- W4207065448 hasRelatedWork W2022600629 @default.
- W4207065448 hasRelatedWork W2024986245 @default.
- W4207065448 hasRelatedWork W2097387840 @default.
- W4207065448 hasRelatedWork W2229421325 @default.
- W4207065448 hasRelatedWork W2767651786 @default.
- W4207065448 hasRelatedWork W2912288872 @default.
- W4207065448 hasRelatedWork W4207065448 @default.
- W4207065448 hasRelatedWork W4385415357 @default.
- W4207065448 hasRelatedWork W564581980 @default.
- W4207065448 hasVolume "15" @default.
- W4207065448 isParatext "false" @default.
- W4207065448 isRetracted "false" @default.
- W4207065448 workType "article" @default.