Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207066734> ?p ?o ?g. }
- W4207066734 endingPage "318" @default.
- W4207066734 startingPage "297" @default.
- W4207066734 abstract "AbstractVarious research initiatives have been reported regarding highly effective results for the text detection problem, which consists of detecting textual elements, such as words and phrases, in digital images. Text localization is an important step on very widely used mobile applications, for instance, on-the-go translations and recognition of text for the visually impaired. At the same time, edge computing is revolutionizing the way embedded systems are architected by moving complex processing and analysis to end devices (e.g., mobile and wearable devices). In this context, the development of lightweight networks that can be run in devices with restricted computing power and with a minimum latency as possible is essential to make plenty of mobile-oriented solutions feasible in practice. In this work, we investigate the use of efficient object detection networks to address this task, proposing the fusion of two lightweight neural network architectures, MobileNetV2 and Single Shot Detector (SSD), into our approach named MobText. As experimental results in the ICDAR’11 and ICDAR’13 datasets demonstrates that our solution yields the best trade-off between effectiveness and efficiency in terms of processing time, achieving the state-of-the-art results on the ICDAR’11 dataset with an F-measure of (96.09%) and an average processing time of 464 ms on a smartphone device, over experiments executed on both dataset images and with images captured in real time from the portable device.KeywordsScene text detectionMobile devicesObject detector networksMobilenetV2Single shot detector" @default.
- W4207066734 created "2022-01-26" @default.
- W4207066734 creator A5029441599 @default.
- W4207066734 creator A5038679514 @default.
- W4207066734 creator A5045113081 @default.
- W4207066734 creator A5045876000 @default.
- W4207066734 creator A5058927014 @default.
- W4207066734 creator A5059853934 @default.
- W4207066734 creator A5065725754 @default.
- W4207066734 creator A5067532275 @default.
- W4207066734 creator A5068649110 @default.
- W4207066734 creator A5081409776 @default.
- W4207066734 creator A5081774195 @default.
- W4207066734 date "2022-01-01" @default.
- W4207066734 modified "2023-10-01" @default.
- W4207066734 title "Scene Text Localization Using Lightweight Convolutional Networks" @default.
- W4207066734 cites W1895191496 @default.
- W4207066734 cites W1966631307 @default.
- W4207066734 cites W1976382093 @default.
- W4207066734 cites W1978729128 @default.
- W4207066734 cites W1979874558 @default.
- W4207066734 cites W1995341919 @default.
- W4207066734 cites W2008806374 @default.
- W4207066734 cites W2017278151 @default.
- W4207066734 cites W2019830313 @default.
- W4207066734 cites W2030536784 @default.
- W4207066734 cites W2031489346 @default.
- W4207066734 cites W2037227137 @default.
- W4207066734 cites W2069472161 @default.
- W4207066734 cites W2083954025 @default.
- W4207066734 cites W2112796928 @default.
- W4207066734 cites W2124404372 @default.
- W4207066734 cites W2144506857 @default.
- W4207066734 cites W2144554289 @default.
- W4207066734 cites W2146835493 @default.
- W4207066734 cites W2159807109 @default.
- W4207066734 cites W2165569569 @default.
- W4207066734 cites W2194775991 @default.
- W4207066734 cites W2204328893 @default.
- W4207066734 cites W2217433794 @default.
- W4207066734 cites W2339589954 @default.
- W4207066734 cites W2343052201 @default.
- W4207066734 cites W2550687635 @default.
- W4207066734 cites W2565639579 @default.
- W4207066734 cites W2574887079 @default.
- W4207066734 cites W2755460504 @default.
- W4207066734 cites W2762383441 @default.
- W4207066734 cites W2779757316 @default.
- W4207066734 cites W2784050770 @default.
- W4207066734 cites W2963087201 @default.
- W4207066734 cites W2963163009 @default.
- W4207066734 cites W2963977642 @default.
- W4207066734 cites W2997095758 @default.
- W4207066734 cites W3007107929 @default.
- W4207066734 cites W3011933227 @default.
- W4207066734 cites W3016853014 @default.
- W4207066734 cites W3106250896 @default.
- W4207066734 cites W4205947740 @default.
- W4207066734 cites W4254298996 @default.
- W4207066734 doi "https://doi.org/10.1007/978-3-030-94893-1_13" @default.
- W4207066734 hasPublicationYear "2022" @default.
- W4207066734 type Work @default.
- W4207066734 citedByCount "0" @default.
- W4207066734 crossrefType "book-chapter" @default.
- W4207066734 hasAuthorship W4207066734A5029441599 @default.
- W4207066734 hasAuthorship W4207066734A5038679514 @default.
- W4207066734 hasAuthorship W4207066734A5045113081 @default.
- W4207066734 hasAuthorship W4207066734A5045876000 @default.
- W4207066734 hasAuthorship W4207066734A5058927014 @default.
- W4207066734 hasAuthorship W4207066734A5059853934 @default.
- W4207066734 hasAuthorship W4207066734A5065725754 @default.
- W4207066734 hasAuthorship W4207066734A5067532275 @default.
- W4207066734 hasAuthorship W4207066734A5068649110 @default.
- W4207066734 hasAuthorship W4207066734A5081409776 @default.
- W4207066734 hasAuthorship W4207066734A5081774195 @default.
- W4207066734 hasConcept C111919701 @default.
- W4207066734 hasConcept C120665830 @default.
- W4207066734 hasConcept C121332964 @default.
- W4207066734 hasConcept C127413603 @default.
- W4207066734 hasConcept C149635348 @default.
- W4207066734 hasConcept C150594956 @default.
- W4207066734 hasConcept C151730666 @default.
- W4207066734 hasConcept C153180895 @default.
- W4207066734 hasConcept C154945302 @default.
- W4207066734 hasConcept C162324750 @default.
- W4207066734 hasConcept C186967261 @default.
- W4207066734 hasConcept C187736073 @default.
- W4207066734 hasConcept C2776151529 @default.
- W4207066734 hasConcept C2779343474 @default.
- W4207066734 hasConcept C2780451532 @default.
- W4207066734 hasConcept C2992734406 @default.
- W4207066734 hasConcept C3019835501 @default.
- W4207066734 hasConcept C31972630 @default.
- W4207066734 hasConcept C41008148 @default.
- W4207066734 hasConcept C54290928 @default.
- W4207066734 hasConcept C76155785 @default.
- W4207066734 hasConcept C78519656 @default.
- W4207066734 hasConcept C81363708 @default.