Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207068100> ?p ?o ?g. }
- W4207068100 endingPage "98" @default.
- W4207068100 startingPage "84" @default.
- W4207068100 abstract "Defect prediction is proposed to assist practitioners effectively prioritize limited Software Quality Assurance (SQA) resources on the most risky files that are likely to have post-release software defects. However, there exist two main limitations in prior studies: (1) the granularity levels of defect predictions are still coarse-grained and (2) the surrounding tokens and surrounding lines have not yet been fully utilized. In this paper, we perform a survey study to better understand how practitioners perform code inspection in modern code review process, and their perception on a line-level defect prediction. According to the responses from 36 practitioners, we found that 50% of them spent at least 10 minutes to more than one hour to review a single file, while 64% of them still perceived that code inspection activity is challenging to extremely challenging. In addition, 64% of the respondents perceived that a line-level defect prediction tool would potentially be helpful in identifying defective lines. Motivated by the practitioners’ perspective, we present DeepLineDP, a deep learning approach to automatically learn the semantic properties of the surrounding tokens and lines in order to identify defective files and defective lines. Through a case study of 32 releases of 9 software projects, we find that the risk score of code tokens varies greatly depending on their location. Our DeepLineDP is 17%-37% more accurate than other file-level defect prediction approaches; is 47%-250% more cost-effective than other line-level defect prediction approaches; and achieves a reasonable performance when transferred to other software projects. These findings confirm that the surrounding tokens and surrounding lines should be considered to identify the fine-grained locations of defective files (i.e., defective lines)." @default.
- W4207068100 created "2022-01-26" @default.
- W4207068100 creator A5034122282 @default.
- W4207068100 creator A5081449581 @default.
- W4207068100 date "2023-01-01" @default.
- W4207068100 modified "2023-10-06" @default.
- W4207068100 title "DeepLineDP: Towards a Deep Learning Approach for Line-Level Defect Prediction" @default.
- W4207068100 cites W171406816 @default.
- W4207068100 cites W1771830246 @default.
- W4207068100 cites W1975040830 @default.
- W4207068100 cites W2015001165 @default.
- W4207068100 cites W2046495622 @default.
- W4207068100 cites W2046830558 @default.
- W4207068100 cites W2051978688 @default.
- W4207068100 cites W2067436653 @default.
- W4207068100 cites W2071983648 @default.
- W4207068100 cites W2086464170 @default.
- W4207068100 cites W2101227285 @default.
- W4207068100 cites W2105300539 @default.
- W4207068100 cites W2111421634 @default.
- W4207068100 cites W2121866145 @default.
- W4207068100 cites W2125999269 @default.
- W4207068100 cites W2143085507 @default.
- W4207068100 cites W2147386665 @default.
- W4207068100 cites W2148143831 @default.
- W4207068100 cites W2149014999 @default.
- W4207068100 cites W2150786161 @default.
- W4207068100 cites W2158744032 @default.
- W4207068100 cites W2167117640 @default.
- W4207068100 cites W2312398278 @default.
- W4207068100 cites W2360967250 @default.
- W4207068100 cites W2367798545 @default.
- W4207068100 cites W2374812233 @default.
- W4207068100 cites W2385483600 @default.
- W4207068100 cites W2470673105 @default.
- W4207068100 cites W2474835145 @default.
- W4207068100 cites W2514538448 @default.
- W4207068100 cites W2580969380 @default.
- W4207068100 cites W2740130862 @default.
- W4207068100 cites W2743316948 @default.
- W4207068100 cites W2767894374 @default.
- W4207068100 cites W2796200341 @default.
- W4207068100 cites W2888223970 @default.
- W4207068100 cites W2888448570 @default.
- W4207068100 cites W2898124301 @default.
- W4207068100 cites W2898435572 @default.
- W4207068100 cites W2900961173 @default.
- W4207068100 cites W2901941771 @default.
- W4207068100 cites W2903359694 @default.
- W4207068100 cites W2909172538 @default.
- W4207068100 cites W2954274464 @default.
- W4207068100 cites W2954276596 @default.
- W4207068100 cites W2954823997 @default.
- W4207068100 cites W2955991060 @default.
- W4207068100 cites W2963097549 @default.
- W4207068100 cites W2963520355 @default.
- W4207068100 cites W2963548617 @default.
- W4207068100 cites W2963937700 @default.
- W4207068100 cites W2979566992 @default.
- W4207068100 cites W2998024052 @default.
- W4207068100 cites W3013745307 @default.
- W4207068100 cites W3046757114 @default.
- W4207068100 cites W3101228802 @default.
- W4207068100 cites W3105867435 @default.
- W4207068100 cites W3122149408 @default.
- W4207068100 cites W3134708177 @default.
- W4207068100 cites W3141989311 @default.
- W4207068100 cites W3149100806 @default.
- W4207068100 cites W3174067697 @default.
- W4207068100 cites W3174750614 @default.
- W4207068100 cites W3175995826 @default.
- W4207068100 cites W4206241418 @default.
- W4207068100 cites W4245415816 @default.
- W4207068100 cites W4256657178 @default.
- W4207068100 cites W4289236186 @default.
- W4207068100 doi "https://doi.org/10.1109/tse.2022.3144348" @default.
- W4207068100 hasPublicationYear "2023" @default.
- W4207068100 type Work @default.
- W4207068100 citedByCount "10" @default.
- W4207068100 countsByYear W42070681002022 @default.
- W4207068100 countsByYear W42070681002023 @default.
- W4207068100 crossrefType "journal-article" @default.
- W4207068100 hasAuthorship W4207068100A5034122282 @default.
- W4207068100 hasAuthorship W4207068100A5081449581 @default.
- W4207068100 hasConcept C1009929 @default.
- W4207068100 hasConcept C10272871 @default.
- W4207068100 hasConcept C117447612 @default.
- W4207068100 hasConcept C119857082 @default.
- W4207068100 hasConcept C124101348 @default.
- W4207068100 hasConcept C154945302 @default.
- W4207068100 hasConcept C177264268 @default.
- W4207068100 hasConcept C177774035 @default.
- W4207068100 hasConcept C199360897 @default.
- W4207068100 hasConcept C199519371 @default.
- W4207068100 hasConcept C2776760102 @default.
- W4207068100 hasConcept C2776969324 @default.
- W4207068100 hasConcept C2777904410 @default.
- W4207068100 hasConcept C41008148 @default.