Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207068982> ?p ?o ?g. }
- W4207068982 endingPage "1476" @default.
- W4207068982 startingPage "1466" @default.
- W4207068982 abstract "Genetic code expansion is a versatile method for in situ synthesis of modified proteins. During mRNA translation, amber stop codons are suppressed to site-specifically incorporate non-canonical amino acids. Thus, nanobodies can be equipped with photocaged amino acids to control target binding on demand. The efficiency of amber suppression and protein synthesis can vary with unpredictable background expression, and the reasons are hardly understood. Here, we identified a substantial limitation that prevented synthesis of nanobodies with N-terminal modifications for light control. After systematic analyses, we hypothesized that nanobody synthesis was severely affected by ribosomal inaccuracy during the early phases of translation. To circumvent a background-causing read-through of a premature stop codon, we designed a new suppression concept based on ribosomal skipping. As an example, we generated intrabodies with photoactivated target binding in mammalian cells. The findings provide valuable insights into the genetic code expansion and describe a versatile synthesis route for the generation of modified nanobodies that opens up new perspectives for efficient site-specific integration of chemical tools. In the area of photopharmacology, our flexible intrabody concept builds an ideal platform to modulate target protein function and interaction." @default.
- W4207068982 created "2022-01-26" @default.
- W4207068982 creator A5007668889 @default.
- W4207068982 creator A5024203904 @default.
- W4207068982 creator A5026455999 @default.
- W4207068982 creator A5028438386 @default.
- W4207068982 creator A5053148625 @default.
- W4207068982 date "2022-01-21" @default.
- W4207068982 modified "2023-10-12" @default.
- W4207068982 title "Efficient Amber Suppression <i>via</i> Ribosomal Skipping for <i>In Situ</i> Synthesis of Photoconditional Nanobodies" @default.
- W4207068982 cites W1263616324 @default.
- W4207068982 cites W1518100516 @default.
- W4207068982 cites W187357154 @default.
- W4207068982 cites W1906256670 @default.
- W4207068982 cites W1964330084 @default.
- W4207068982 cites W1965347340 @default.
- W4207068982 cites W1974973078 @default.
- W4207068982 cites W1978880815 @default.
- W4207068982 cites W1985650731 @default.
- W4207068982 cites W1997080721 @default.
- W4207068982 cites W1999119791 @default.
- W4207068982 cites W2001215553 @default.
- W4207068982 cites W2002336386 @default.
- W4207068982 cites W2006164932 @default.
- W4207068982 cites W2016104233 @default.
- W4207068982 cites W2021349447 @default.
- W4207068982 cites W2021438104 @default.
- W4207068982 cites W2024156903 @default.
- W4207068982 cites W2028119145 @default.
- W4207068982 cites W2034512806 @default.
- W4207068982 cites W2047140808 @default.
- W4207068982 cites W2049119917 @default.
- W4207068982 cites W2060273164 @default.
- W4207068982 cites W2060391020 @default.
- W4207068982 cites W2062543706 @default.
- W4207068982 cites W2069182434 @default.
- W4207068982 cites W2077785805 @default.
- W4207068982 cites W2081496564 @default.
- W4207068982 cites W2089268815 @default.
- W4207068982 cites W2089788910 @default.
- W4207068982 cites W2093058488 @default.
- W4207068982 cites W2095224834 @default.
- W4207068982 cites W2125534391 @default.
- W4207068982 cites W2128094872 @default.
- W4207068982 cites W2129247597 @default.
- W4207068982 cites W2135046159 @default.
- W4207068982 cites W2135795058 @default.
- W4207068982 cites W2136639243 @default.
- W4207068982 cites W2137162349 @default.
- W4207068982 cites W2146913917 @default.
- W4207068982 cites W2156370777 @default.
- W4207068982 cites W2156990811 @default.
- W4207068982 cites W2157680389 @default.
- W4207068982 cites W2167098225 @default.
- W4207068982 cites W2231352968 @default.
- W4207068982 cites W2330277884 @default.
- W4207068982 cites W2332024781 @default.
- W4207068982 cites W2333958926 @default.
- W4207068982 cites W2469713039 @default.
- W4207068982 cites W2564036323 @default.
- W4207068982 cites W2601457881 @default.
- W4207068982 cites W2626452552 @default.
- W4207068982 cites W2766881846 @default.
- W4207068982 cites W2770490738 @default.
- W4207068982 cites W2814854939 @default.
- W4207068982 cites W2888336913 @default.
- W4207068982 cites W2888368935 @default.
- W4207068982 cites W2891252361 @default.
- W4207068982 cites W2903851235 @default.
- W4207068982 cites W2911957159 @default.
- W4207068982 cites W2923238538 @default.
- W4207068982 cites W2923609388 @default.
- W4207068982 cites W2944969418 @default.
- W4207068982 cites W2950430276 @default.
- W4207068982 cites W2950669573 @default.
- W4207068982 cites W2952639737 @default.
- W4207068982 cites W2962101943 @default.
- W4207068982 cites W2982609734 @default.
- W4207068982 cites W2990244617 @default.
- W4207068982 cites W2991204319 @default.
- W4207068982 cites W2992049309 @default.
- W4207068982 cites W3087114948 @default.
- W4207068982 cites W3089277109 @default.
- W4207068982 cites W3103997575 @default.
- W4207068982 cites W3111662732 @default.
- W4207068982 cites W3140808807 @default.
- W4207068982 cites W3152627598 @default.
- W4207068982 cites W3174881694 @default.
- W4207068982 cites W3194478006 @default.
- W4207068982 cites W4231832388 @default.
- W4207068982 cites W4244672147 @default.
- W4207068982 cites W4245782616 @default.
- W4207068982 cites W4254395832 @default.
- W4207068982 cites W3013615095 @default.
- W4207068982 doi "https://doi.org/10.1021/acssynbio.1c00471" @default.
- W4207068982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35060375" @default.
- W4207068982 hasPublicationYear "2022" @default.
- W4207068982 type Work @default.