Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207069058> ?p ?o ?g. }
- W4207069058 endingPage "120031" @default.
- W4207069058 startingPage "120031" @default.
- W4207069058 abstract "Aboveground biomass (AGB) and carbon uptake of a forest are key ecological indicators for various technical and scientific applications and sustainable forest management. Deep Learning (DL) methods have been considered as alternative to regression techniques to increase the reliability of tree AGB prediction. The objectives were to develop DL models to predict AGB in the tropical evergreen broadleaf forests and compare DL models with traditional regression equations for their reliability in AGB prediction. A total of 968 individual trees were destructively sampled from fourteen 1-ha and twenty-six 0.2-ha plots distributed across five ecoregions of Viet Nam to get a dataset of tree predictors of diameter at breast height (DBH), tree height (H), wood density (WD) and the response variable of AGB along with forest stand factors of basal area (BA) and density (N); ecological and environmental variables such as ecoregion, slope, altitude, soil type, averaged annual temperature (T), averaged annual rainfall (P) and averaged dry season length. The DL models were developed using different combinations of variables selected by factor analysis for mixed data and compared with traditional regression equations by using cross-validation. Trees AGB in tropical rainforest predicted by DL models had significantly higher reliability than the conventional regression equations when both had the same input variables. Of the 16 developed DL models with 1 to 9 predictors, the model with 9 predictors (DBH, H, Ecoregion, Altitude, P, T, Soil type, N and WD) was the best DL model which reduced root mean square percent error (RMSPE) and mean absolute percent error (MAPE) by up to 7.7% and 6.1%, respectively, compared to traditional allometric equations. The DL models created in this study should be applied for measured tree data following factors of the forest stand, ecology, and environment in sampled plots to predict the tree AGB and total AGB, carbon on a large scale with variation in the value of these factors. Thus, we recommend that the DL models apply for the Measurement, Reporting, and Verification (MRV) system of the Reducing Emissions from Deforestation and forest Degradation (REDD+) program at a large regional level, national or territorial level scale." @default.
- W4207069058 created "2022-01-26" @default.
- W4207069058 creator A5005398269 @default.
- W4207069058 creator A5024914051 @default.
- W4207069058 creator A5048279619 @default.
- W4207069058 creator A5057669039 @default.
- W4207069058 creator A5065352586 @default.
- W4207069058 date "2022-03-01" @default.
- W4207069058 modified "2023-09-25" @default.
- W4207069058 title "Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests" @default.
- W4207069058 cites W1988779135 @default.
- W4207069058 cites W2081705281 @default.
- W4207069058 cites W2112776483 @default.
- W4207069058 cites W2113521108 @default.
- W4207069058 cites W2133613984 @default.
- W4207069058 cites W2159759971 @default.
- W4207069058 cites W2467373994 @default.
- W4207069058 cites W2530738338 @default.
- W4207069058 cites W2587550673 @default.
- W4207069058 cites W2614464134 @default.
- W4207069058 cites W2822665421 @default.
- W4207069058 cites W2907788294 @default.
- W4207069058 cites W2911925130 @default.
- W4207069058 cites W2912133412 @default.
- W4207069058 cites W2919115771 @default.
- W4207069058 cites W2950674916 @default.
- W4207069058 cites W2955202322 @default.
- W4207069058 cites W3020873385 @default.
- W4207069058 cites W3026646233 @default.
- W4207069058 cites W3036670389 @default.
- W4207069058 cites W3092281821 @default.
- W4207069058 cites W3105220378 @default.
- W4207069058 cites W3112661396 @default.
- W4207069058 cites W4232714830 @default.
- W4207069058 doi "https://doi.org/10.1016/j.foreco.2022.120031" @default.
- W4207069058 hasPublicationYear "2022" @default.
- W4207069058 type Work @default.
- W4207069058 citedByCount "6" @default.
- W4207069058 countsByYear W42070690582022 @default.
- W4207069058 countsByYear W42070690582023 @default.
- W4207069058 crossrefType "journal-article" @default.
- W4207069058 hasAuthorship W4207069058A5005398269 @default.
- W4207069058 hasAuthorship W4207069058A5024914051 @default.
- W4207069058 hasAuthorship W4207069058A5048279619 @default.
- W4207069058 hasAuthorship W4207069058A5057669039 @default.
- W4207069058 hasAuthorship W4207069058A5065352586 @default.
- W4207069058 hasConcept C105795698 @default.
- W4207069058 hasConcept C115540264 @default.
- W4207069058 hasConcept C127313418 @default.
- W4207069058 hasConcept C152877465 @default.
- W4207069058 hasConcept C177924670 @default.
- W4207069058 hasConcept C18903297 @default.
- W4207069058 hasConcept C205649164 @default.
- W4207069058 hasConcept C2524010 @default.
- W4207069058 hasConcept C2619416 @default.
- W4207069058 hasConcept C2776191655 @default.
- W4207069058 hasConcept C33923547 @default.
- W4207069058 hasConcept C39432304 @default.
- W4207069058 hasConcept C45804977 @default.
- W4207069058 hasConcept C58330081 @default.
- W4207069058 hasConcept C6350597 @default.
- W4207069058 hasConcept C83546350 @default.
- W4207069058 hasConcept C86803240 @default.
- W4207069058 hasConcept C91354502 @default.
- W4207069058 hasConcept C91586092 @default.
- W4207069058 hasConcept C97137747 @default.
- W4207069058 hasConceptScore W4207069058C105795698 @default.
- W4207069058 hasConceptScore W4207069058C115540264 @default.
- W4207069058 hasConceptScore W4207069058C127313418 @default.
- W4207069058 hasConceptScore W4207069058C152877465 @default.
- W4207069058 hasConceptScore W4207069058C177924670 @default.
- W4207069058 hasConceptScore W4207069058C18903297 @default.
- W4207069058 hasConceptScore W4207069058C205649164 @default.
- W4207069058 hasConceptScore W4207069058C2524010 @default.
- W4207069058 hasConceptScore W4207069058C2619416 @default.
- W4207069058 hasConceptScore W4207069058C2776191655 @default.
- W4207069058 hasConceptScore W4207069058C33923547 @default.
- W4207069058 hasConceptScore W4207069058C39432304 @default.
- W4207069058 hasConceptScore W4207069058C45804977 @default.
- W4207069058 hasConceptScore W4207069058C58330081 @default.
- W4207069058 hasConceptScore W4207069058C6350597 @default.
- W4207069058 hasConceptScore W4207069058C83546350 @default.
- W4207069058 hasConceptScore W4207069058C86803240 @default.
- W4207069058 hasConceptScore W4207069058C91354502 @default.
- W4207069058 hasConceptScore W4207069058C91586092 @default.
- W4207069058 hasConceptScore W4207069058C97137747 @default.
- W4207069058 hasLocation W42070690581 @default.
- W4207069058 hasOpenAccess W4207069058 @default.
- W4207069058 hasPrimaryLocation W42070690581 @default.
- W4207069058 hasRelatedWork W1903055531 @default.
- W4207069058 hasRelatedWork W2155567227 @default.
- W4207069058 hasRelatedWork W2183871427 @default.
- W4207069058 hasRelatedWork W2379227686 @default.
- W4207069058 hasRelatedWork W2381473848 @default.
- W4207069058 hasRelatedWork W2526288107 @default.
- W4207069058 hasRelatedWork W2947303571 @default.
- W4207069058 hasRelatedWork W3024115140 @default.
- W4207069058 hasRelatedWork W3143875440 @default.