Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207069129> ?p ?o ?g. }
- W4207069129 endingPage "3913" @default.
- W4207069129 startingPage "3903" @default.
- W4207069129 abstract "Nowadays the robot manipulation skills are usually learned by human demonstration via trajectory-level learning, which somewhat lacks robustness and generalization. In this paper, we propose a novel contact state level learning method for robot manipulation skill acquisition via human demonstration. The robot-environment contact states are described via environment dynamics modelling and geometric constraints modelling for flexible contact and rigid contact cases, respectively. During human demonstration process, the robot-environment interaction force, the robot position, and velocity data are collected. After that, the environment dynamics and geometric constraints modelling methods are presented to determine the contact state changes during the robot manipulation process. Then the robot manipulator learns the contact state information rather than specific manipulation trajectory. On this basis, the manipulation control law using active exploration method is presented to control the robot during the button pressing process and peg-hole-insertion process, respectively. Finally, the performance of the presented methodology has been verified via experimental studies. Note to Practitioners—Intelligent robots will become the right assistants of human beings in the future, especially in various areas of manipulation occasions. The important premise of realizing this vision is that the robots should have certain ability of manipulation skill learning. A lot of research has been carried out in this field, many of which are focusing on trajectory level manipulation skill learning and reproduction. Other than the trajectory level learning, human beings can learn many other higher levels of manipulation skills, such as the contact state level and semantic level learning, which makes the learning results more robust and general. In this paper, the contact state estimation and learning method via environment dynamics and geometric constraints modelling is presented to learn the robot manipulation skill based on the contact state transition conditions. In this way, the robot needs less data in the skill learning process, and the trajectory level learning is avoided. After learning the contact state level manipulation skill, the lower trajectory level command is autonomously generated. Experiments on button pressing and peg-hole-insertion tasks by KUKA iiwa robot have obtained very good results. Other than the button pressing and peg-hole-insertion tasks, the presented methodology can be applied to many other manipulation tasks, as long as there are contact state changes in the manipulation process. The work of this paper lays a foundation for the robot learning of higher-level manipulation skills." @default.
- W4207069129 created "2022-01-26" @default.
- W4207069129 creator A5039412958 @default.
- W4207069129 creator A5083493899 @default.
- W4207069129 creator A5091127758 @default.
- W4207069129 date "2022-10-01" @default.
- W4207069129 modified "2023-10-16" @default.
- W4207069129 title "A Novel Contact State Estimation Method for Robot Manipulation Skill Learning via Environment Dynamics and Constraints Modeling" @default.
- W4207069129 cites W1885639605 @default.
- W4207069129 cites W1990281946 @default.
- W4207069129 cites W1998557102 @default.
- W4207069129 cites W2088192611 @default.
- W4207069129 cites W2104171826 @default.
- W4207069129 cites W2131457630 @default.
- W4207069129 cites W2148459629 @default.
- W4207069129 cites W2168868109 @default.
- W4207069129 cites W2171215214 @default.
- W4207069129 cites W2181005280 @default.
- W4207069129 cites W2526166478 @default.
- W4207069129 cites W2532272934 @default.
- W4207069129 cites W2575705757 @default.
- W4207069129 cites W2577008596 @default.
- W4207069129 cites W2619378249 @default.
- W4207069129 cites W2791542133 @default.
- W4207069129 cites W2795550549 @default.
- W4207069129 cites W2797679738 @default.
- W4207069129 cites W2803381593 @default.
- W4207069129 cites W2913938871 @default.
- W4207069129 cites W2919658942 @default.
- W4207069129 cites W2967717386 @default.
- W4207069129 cites W2976205474 @default.
- W4207069129 cites W3014982919 @default.
- W4207069129 cites W3031520393 @default.
- W4207069129 cites W3094427810 @default.
- W4207069129 cites W3118688377 @default.
- W4207069129 doi "https://doi.org/10.1109/tase.2021.3139096" @default.
- W4207069129 hasPublicationYear "2022" @default.
- W4207069129 type Work @default.
- W4207069129 citedByCount "1" @default.
- W4207069129 countsByYear W42070691292023 @default.
- W4207069129 crossrefType "journal-article" @default.
- W4207069129 hasAuthorship W4207069129A5039412958 @default.
- W4207069129 hasAuthorship W4207069129A5083493899 @default.
- W4207069129 hasAuthorship W4207069129A5091127758 @default.
- W4207069129 hasConcept C104317684 @default.
- W4207069129 hasConcept C111919701 @default.
- W4207069129 hasConcept C121332964 @default.
- W4207069129 hasConcept C127413603 @default.
- W4207069129 hasConcept C1276947 @default.
- W4207069129 hasConcept C133731056 @default.
- W4207069129 hasConcept C13662910 @default.
- W4207069129 hasConcept C145460709 @default.
- W4207069129 hasConcept C154945302 @default.
- W4207069129 hasConcept C185592680 @default.
- W4207069129 hasConcept C188888258 @default.
- W4207069129 hasConcept C19966478 @default.
- W4207069129 hasConcept C2775924081 @default.
- W4207069129 hasConcept C41008148 @default.
- W4207069129 hasConcept C47446073 @default.
- W4207069129 hasConcept C55493867 @default.
- W4207069129 hasConcept C63479239 @default.
- W4207069129 hasConcept C65401140 @default.
- W4207069129 hasConcept C90509273 @default.
- W4207069129 hasConcept C98045186 @default.
- W4207069129 hasConceptScore W4207069129C104317684 @default.
- W4207069129 hasConceptScore W4207069129C111919701 @default.
- W4207069129 hasConceptScore W4207069129C121332964 @default.
- W4207069129 hasConceptScore W4207069129C127413603 @default.
- W4207069129 hasConceptScore W4207069129C1276947 @default.
- W4207069129 hasConceptScore W4207069129C133731056 @default.
- W4207069129 hasConceptScore W4207069129C13662910 @default.
- W4207069129 hasConceptScore W4207069129C145460709 @default.
- W4207069129 hasConceptScore W4207069129C154945302 @default.
- W4207069129 hasConceptScore W4207069129C185592680 @default.
- W4207069129 hasConceptScore W4207069129C188888258 @default.
- W4207069129 hasConceptScore W4207069129C19966478 @default.
- W4207069129 hasConceptScore W4207069129C2775924081 @default.
- W4207069129 hasConceptScore W4207069129C41008148 @default.
- W4207069129 hasConceptScore W4207069129C47446073 @default.
- W4207069129 hasConceptScore W4207069129C55493867 @default.
- W4207069129 hasConceptScore W4207069129C63479239 @default.
- W4207069129 hasConceptScore W4207069129C65401140 @default.
- W4207069129 hasConceptScore W4207069129C90509273 @default.
- W4207069129 hasConceptScore W4207069129C98045186 @default.
- W4207069129 hasFunder F4320321001 @default.
- W4207069129 hasFunder F4320321543 @default.
- W4207069129 hasIssue "4" @default.
- W4207069129 hasLocation W42070691291 @default.
- W4207069129 hasOpenAccess W4207069129 @default.
- W4207069129 hasPrimaryLocation W42070691291 @default.
- W4207069129 hasRelatedWork W1585707520 @default.
- W4207069129 hasRelatedWork W2348134434 @default.
- W4207069129 hasRelatedWork W2597141888 @default.
- W4207069129 hasRelatedWork W2752162720 @default.
- W4207069129 hasRelatedWork W2782381505 @default.
- W4207069129 hasRelatedWork W3004084518 @default.
- W4207069129 hasRelatedWork W3017049857 @default.
- W4207069129 hasRelatedWork W3128114094 @default.