Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207072108> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4207072108 endingPage "13851" @default.
- W4207072108 startingPage "13844" @default.
- W4207072108 abstract "In this study, the researchers developed holographic image software for the Polaris, a nongovernmental Taiwanese oceanographic research vessel. It is a survey vessel that was codeveloped through an industry–academia collaboration between National Kaohsiung University of Science and Technology and Dragon Prince Hydro-Survey Enterprise Co. With a weight of 260 tons, length of 36.98 m, and width of 6.80 m, the vessel can travel at a speed of 11 knots. It has undergone underwater rescue and exploration operations and is therefore fairly experienced in such operations. When performing underwater exploration missions, survey vessels are often faced with interferences caused by factors such as current velocity; water temperature, refraction, and spectral conditions; climate; ocean current; presence of algae; and light reflection from schools of fish. Therefore, instantaneous image analysis is imperative for marine exploration. In accordance with the instantaneous recognition needs of the Polaris, the researchers developed artificial-neural-network-based recognition software for rapidly recognizing the category of a detected underwater object. Recognition of shapes in low-resolution underwater images was improved using a neural network resulting in an average recognition rate of 95%. Analysis of variance also indicated that the neural network yielded a significantly higher recognition rate than did manual recognition." @default.
- W4207072108 created "2022-01-26" @default.
- W4207072108 creator A5014828188 @default.
- W4207072108 creator A5016748160 @default.
- W4207072108 creator A5017682342 @default.
- W4207072108 creator A5040625381 @default.
- W4207072108 creator A5058477490 @default.
- W4207072108 creator A5064532547 @default.
- W4207072108 date "2022-01-01" @default.
- W4207072108 modified "2023-09-26" @default.
- W4207072108 title "A Study of Artificial Neural Network Technology Applied to Image Recognition for Underwater Images" @default.
- W4207072108 cites W1986334598 @default.
- W4207072108 cites W2027145043 @default.
- W4207072108 cites W2056850410 @default.
- W4207072108 cites W2104763670 @default.
- W4207072108 cites W2128055756 @default.
- W4207072108 cites W2474366376 @default.
- W4207072108 cites W2614723326 @default.
- W4207072108 cites W2796827446 @default.
- W4207072108 cites W2889756488 @default.
- W4207072108 cites W2891635869 @default.
- W4207072108 cites W2894843516 @default.
- W4207072108 cites W2897795150 @default.
- W4207072108 cites W2902466212 @default.
- W4207072108 cites W2910852104 @default.
- W4207072108 cites W2963446712 @default.
- W4207072108 cites W2980326480 @default.
- W4207072108 cites W2998825217 @default.
- W4207072108 cites W3090063164 @default.
- W4207072108 cites W3095921757 @default.
- W4207072108 doi "https://doi.org/10.1109/access.2022.3144742" @default.
- W4207072108 hasPublicationYear "2022" @default.
- W4207072108 type Work @default.
- W4207072108 citedByCount "1" @default.
- W4207072108 countsByYear W42070721082023 @default.
- W4207072108 crossrefType "journal-article" @default.
- W4207072108 hasAuthorship W4207072108A5014828188 @default.
- W4207072108 hasAuthorship W4207072108A5016748160 @default.
- W4207072108 hasAuthorship W4207072108A5017682342 @default.
- W4207072108 hasAuthorship W4207072108A5040625381 @default.
- W4207072108 hasAuthorship W4207072108A5058477490 @default.
- W4207072108 hasAuthorship W4207072108A5064532547 @default.
- W4207072108 hasBestOaLocation W42070721081 @default.
- W4207072108 hasConcept C111368507 @default.
- W4207072108 hasConcept C127313418 @default.
- W4207072108 hasConcept C127413603 @default.
- W4207072108 hasConcept C154945302 @default.
- W4207072108 hasConcept C199104240 @default.
- W4207072108 hasConcept C199360897 @default.
- W4207072108 hasConcept C2777904410 @default.
- W4207072108 hasConcept C41008148 @default.
- W4207072108 hasConcept C50644808 @default.
- W4207072108 hasConcept C65682993 @default.
- W4207072108 hasConcept C98083399 @default.
- W4207072108 hasConceptScore W4207072108C111368507 @default.
- W4207072108 hasConceptScore W4207072108C127313418 @default.
- W4207072108 hasConceptScore W4207072108C127413603 @default.
- W4207072108 hasConceptScore W4207072108C154945302 @default.
- W4207072108 hasConceptScore W4207072108C199104240 @default.
- W4207072108 hasConceptScore W4207072108C199360897 @default.
- W4207072108 hasConceptScore W4207072108C2777904410 @default.
- W4207072108 hasConceptScore W4207072108C41008148 @default.
- W4207072108 hasConceptScore W4207072108C50644808 @default.
- W4207072108 hasConceptScore W4207072108C65682993 @default.
- W4207072108 hasConceptScore W4207072108C98083399 @default.
- W4207072108 hasLocation W42070721081 @default.
- W4207072108 hasLocation W42070721082 @default.
- W4207072108 hasOpenAccess W4207072108 @default.
- W4207072108 hasPrimaryLocation W42070721081 @default.
- W4207072108 hasRelatedWork W1983712426 @default.
- W4207072108 hasRelatedWork W2049250963 @default.
- W4207072108 hasRelatedWork W2088318177 @default.
- W4207072108 hasRelatedWork W2186189121 @default.
- W4207072108 hasRelatedWork W2384716533 @default.
- W4207072108 hasRelatedWork W2386387936 @default.
- W4207072108 hasRelatedWork W2743043875 @default.
- W4207072108 hasRelatedWork W2884463022 @default.
- W4207072108 hasRelatedWork W4212951791 @default.
- W4207072108 hasRelatedWork W608493285 @default.
- W4207072108 hasVolume "10" @default.
- W4207072108 isParatext "false" @default.
- W4207072108 isRetracted "false" @default.
- W4207072108 workType "article" @default.