Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207072140> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4207072140 abstract "Abstract Digital nucleic acid amplification tests enable absolute quantification of nucleic acids, but the generation of uniform compartments and reading of the fluorescence requires specialized instruments that are costly, limiting their widespread applications. Here, the authors report deep learning‐enabled polydisperse emulsion‐based digital loop‐mediated isothermal amplification (deep‐dLAMP) for label‐free, low‐cost nucleic acid quantification. deep‐dLAMP performs LAMP reaction in polydisperse emulsions and uses a deep learning algorithm to segment and determine the occupancy status of each emulsion in images based on precipitated byproducts. The volume and occupancy data of the emulsions are then used to infer the nucleic acid concentration based on the Poisson distribution. deep‐dLAMP can accurately predict the sizes and occupancy status of each emulsion and provide accurate measurements of nucleic acid concentrations with a limit of detection of 5.6 copies µl ‐1 and a dynamic range of 37.2 to 11000 copies µl ‐1 . In addition, deep‐dLAMP shows robust performance under various parameters, such as the vortexing time and image qualities. Leveraging the state‐of‐the‐art deep learning models, deep‐dLAMP represents a significant advancement in digital nucleic acid tests by significantly reducing the instrument cost. We envision deep‐dLAMP would be readily adopted by biomedical laboratories and be developed into a point‐of‐care digital nucleic acid test system." @default.
- W4207072140 created "2022-01-26" @default.
- W4207072140 creator A5032008861 @default.
- W4207072140 creator A5065383710 @default.
- W4207072140 creator A5073190439 @default.
- W4207072140 creator A5085132219 @default.
- W4207072140 creator A5090844926 @default.
- W4207072140 date "2022-01-24" @default.
- W4207072140 modified "2023-10-14" @default.
- W4207072140 title "Deep‐dLAMP: Deep Learning‐Enabled Polydisperse Emulsion‐Based Digital Loop‐Mediated Isothermal Amplification" @default.
- W4207072140 cites W1975801865 @default.
- W4207072140 cites W2016143331 @default.
- W4207072140 cites W2110764733 @default.
- W4207072140 cites W2123793021 @default.
- W4207072140 cites W2128839883 @default.
- W4207072140 cites W2334820986 @default.
- W4207072140 cites W2560012560 @default.
- W4207072140 cites W2772807073 @default.
- W4207072140 cites W2804227116 @default.
- W4207072140 cites W2806070179 @default.
- W4207072140 cites W2869281650 @default.
- W4207072140 cites W2908282672 @default.
- W4207072140 cites W2951960076 @default.
- W4207072140 cites W2997822216 @default.
- W4207072140 cites W2998436380 @default.
- W4207072140 cites W3013979643 @default.
- W4207072140 cites W3111814250 @default.
- W4207072140 cites W3186353168 @default.
- W4207072140 cites W4207072140 @default.
- W4207072140 doi "https://doi.org/10.1002/advs.202105450" @default.
- W4207072140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35072353" @default.
- W4207072140 hasPublicationYear "2022" @default.
- W4207072140 type Work @default.
- W4207072140 citedByCount "3" @default.
- W4207072140 countsByYear W42070721402022 @default.
- W4207072140 countsByYear W42070721402023 @default.
- W4207072140 crossrefType "journal-article" @default.
- W4207072140 hasAuthorship W4207072140A5032008861 @default.
- W4207072140 hasAuthorship W4207072140A5065383710 @default.
- W4207072140 hasAuthorship W4207072140A5073190439 @default.
- W4207072140 hasAuthorship W4207072140A5085132219 @default.
- W4207072140 hasAuthorship W4207072140A5090844926 @default.
- W4207072140 hasBestOaLocation W42070721401 @default.
- W4207072140 hasConcept C108583219 @default.
- W4207072140 hasConcept C154945302 @default.
- W4207072140 hasConcept C185592680 @default.
- W4207072140 hasConcept C186060115 @default.
- W4207072140 hasConcept C24107716 @default.
- W4207072140 hasConcept C2778123984 @default.
- W4207072140 hasConcept C41008148 @default.
- W4207072140 hasConcept C552990157 @default.
- W4207072140 hasConcept C55493867 @default.
- W4207072140 hasConcept C60635243 @default.
- W4207072140 hasConcept C86803240 @default.
- W4207072140 hasConceptScore W4207072140C108583219 @default.
- W4207072140 hasConceptScore W4207072140C154945302 @default.
- W4207072140 hasConceptScore W4207072140C185592680 @default.
- W4207072140 hasConceptScore W4207072140C186060115 @default.
- W4207072140 hasConceptScore W4207072140C24107716 @default.
- W4207072140 hasConceptScore W4207072140C2778123984 @default.
- W4207072140 hasConceptScore W4207072140C41008148 @default.
- W4207072140 hasConceptScore W4207072140C552990157 @default.
- W4207072140 hasConceptScore W4207072140C55493867 @default.
- W4207072140 hasConceptScore W4207072140C60635243 @default.
- W4207072140 hasConceptScore W4207072140C86803240 @default.
- W4207072140 hasFunder F4320321921 @default.
- W4207072140 hasIssue "9" @default.
- W4207072140 hasLocation W42070721401 @default.
- W4207072140 hasLocation W42070721402 @default.
- W4207072140 hasLocation W42070721403 @default.
- W4207072140 hasOpenAccess W4207072140 @default.
- W4207072140 hasPrimaryLocation W42070721401 @default.
- W4207072140 hasRelatedWork W2323826182 @default.
- W4207072140 hasRelatedWork W2731899572 @default.
- W4207072140 hasRelatedWork W2748952813 @default.
- W4207072140 hasRelatedWork W2890039456 @default.
- W4207072140 hasRelatedWork W2899084033 @default.
- W4207072140 hasRelatedWork W2997855083 @default.
- W4207072140 hasRelatedWork W3030571003 @default.
- W4207072140 hasRelatedWork W4207072140 @default.
- W4207072140 hasRelatedWork W4315484208 @default.
- W4207072140 hasRelatedWork W4319730036 @default.
- W4207072140 hasVolume "9" @default.
- W4207072140 isParatext "false" @default.
- W4207072140 isRetracted "false" @default.
- W4207072140 workType "article" @default.