Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207074175> ?p ?o ?g. }
- W4207074175 abstract "The Internet of Things (IoT) represents billions of devices collecting valuable information through different sensors to be transferred to the Cloud, where it is stored and processed to infer valuable knowledge. In this regard, Edge Computing (EC) architectures allow providing shorter service response times and reducing the cost of processing IoT data in the Cloud. Moreover, Network Function Virtualization (NFV) provide mechanisms to reduce costs when sharing physical network resources transparently by different user entities. Software-Defined Networks (SDN), closely related to the NFV, are also used to manage virtual networks in a flexible and dynamic way. However, different applications on shared IoT networks may demand different Quality of Service (QoS). Therefore, intelligent mechanisms and algorithms are needed to optimize virtual data flows in networks, such as Deep Reinforcement Learning techniques. This papers presents a review of the existing approaches on DRL for the management of SDN/NFV in Edge-IoT scenarios." @default.
- W4207074175 created "2022-01-26" @default.
- W4207074175 creator A5005448213 @default.
- W4207074175 creator A5029218215 @default.
- W4207074175 creator A5030773387 @default.
- W4207074175 creator A5043258522 @default.
- W4207074175 creator A5088508377 @default.
- W4207074175 date "2021-12-01" @default.
- W4207074175 modified "2023-09-30" @default.
- W4207074175 title "A Review on Deep Reinforcement Learning for the management of SDN and NFV in Edge-IoT" @default.
- W4207074175 cites W1462139170 @default.
- W4207074175 cites W1914583973 @default.
- W4207074175 cites W197770101 @default.
- W4207074175 cites W2014068743 @default.
- W4207074175 cites W2052574125 @default.
- W4207074175 cites W2104595967 @default.
- W4207074175 cites W2145339207 @default.
- W4207074175 cites W2167407217 @default.
- W4207074175 cites W2191588813 @default.
- W4207074175 cites W2257979135 @default.
- W4207074175 cites W2392395307 @default.
- W4207074175 cites W2482179415 @default.
- W4207074175 cites W2606723168 @default.
- W4207074175 cites W2623902153 @default.
- W4207074175 cites W2741507511 @default.
- W4207074175 cites W2766447205 @default.
- W4207074175 cites W2772526503 @default.
- W4207074175 cites W2787114603 @default.
- W4207074175 cites W2787262922 @default.
- W4207074175 cites W2789288708 @default.
- W4207074175 cites W2795926922 @default.
- W4207074175 cites W2802445322 @default.
- W4207074175 cites W2805895568 @default.
- W4207074175 cites W2856479366 @default.
- W4207074175 cites W2884957812 @default.
- W4207074175 cites W2887645765 @default.
- W4207074175 cites W2891388911 @default.
- W4207074175 cites W2897221596 @default.
- W4207074175 cites W2898035736 @default.
- W4207074175 cites W2901828750 @default.
- W4207074175 cites W2903523957 @default.
- W4207074175 cites W2903683137 @default.
- W4207074175 cites W2912213068 @default.
- W4207074175 cites W2913127416 @default.
- W4207074175 cites W2915905517 @default.
- W4207074175 cites W2919412094 @default.
- W4207074175 cites W2926519916 @default.
- W4207074175 cites W2941971445 @default.
- W4207074175 cites W2943930927 @default.
- W4207074175 cites W2943983563 @default.
- W4207074175 cites W2960833983 @default.
- W4207074175 cites W2963752169 @default.
- W4207074175 cites W2963939962 @default.
- W4207074175 cites W2964248614 @default.
- W4207074175 cites W2965527961 @default.
- W4207074175 cites W2967959654 @default.
- W4207074175 cites W2968450700 @default.
- W4207074175 cites W2989054343 @default.
- W4207074175 cites W2989354373 @default.
- W4207074175 cites W2990123902 @default.
- W4207074175 cites W2992245519 @default.
- W4207074175 cites W3003692200 @default.
- W4207074175 cites W3011314740 @default.
- W4207074175 cites W3011765518 @default.
- W4207074175 cites W3016207298 @default.
- W4207074175 cites W3017275226 @default.
- W4207074175 cites W3042365319 @default.
- W4207074175 cites W3100789280 @default.
- W4207074175 cites W3113990095 @default.
- W4207074175 cites W3190783330 @default.
- W4207074175 doi "https://doi.org/10.1109/gcwkshps52748.2021.9682179" @default.
- W4207074175 hasPublicationYear "2021" @default.
- W4207074175 type Work @default.
- W4207074175 citedByCount "4" @default.
- W4207074175 countsByYear W42070741752023 @default.
- W4207074175 crossrefType "proceedings-article" @default.
- W4207074175 hasAuthorship W4207074175A5005448213 @default.
- W4207074175 hasAuthorship W4207074175A5029218215 @default.
- W4207074175 hasAuthorship W4207074175A5030773387 @default.
- W4207074175 hasAuthorship W4207074175A5043258522 @default.
- W4207074175 hasAuthorship W4207074175A5088508377 @default.
- W4207074175 hasConcept C110875604 @default.
- W4207074175 hasConcept C111919701 @default.
- W4207074175 hasConcept C120314980 @default.
- W4207074175 hasConcept C136264566 @default.
- W4207074175 hasConcept C136764020 @default.
- W4207074175 hasConcept C138236772 @default.
- W4207074175 hasConcept C154945302 @default.
- W4207074175 hasConcept C162307627 @default.
- W4207074175 hasConcept C162324750 @default.
- W4207074175 hasConcept C200789330 @default.
- W4207074175 hasConcept C2776874963 @default.
- W4207074175 hasConcept C2778456923 @default.
- W4207074175 hasConcept C2780378061 @default.
- W4207074175 hasConcept C31258907 @default.
- W4207074175 hasConcept C41008148 @default.
- W4207074175 hasConcept C5119721 @default.
- W4207074175 hasConcept C513985346 @default.
- W4207074175 hasConcept C77270119 @default.
- W4207074175 hasConcept C79974875 @default.