Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207077828> ?p ?o ?g. }
- W4207077828 endingPage "547" @default.
- W4207077828 startingPage "532" @default.
- W4207077828 abstract "One of the capacious applications of data science could be its use in bioinformatics. With its proper implementation, chronic diseases like diabetes mellitus, responsible for millions of deaths worldwide, could be diagnosed and predicted with high efficacy. But if not attended, could lead to fatal issues such as kidney failures, heart diseases, and even limb amputation. Diabetic cases have only elevated in numbers in the recent past. The authors use various machine learning, deep learning, and data dimensionality reduction techniques to detect diabetes mellitus. The research is principally conducted on two datasets, first from the Frankfurt Hospital, Germany, second from the University of California, Irvine repository. Models such as support vector machines, Naïve Bayes, and Random Forests were implemented to classify diabetic patients from non-diabetic ones. Subsequently, after hyperparameter tuning, a comparative study on the results was done and the most prominent model was promoted. This process was repeated for the datasets with reduced dimensionality using linear discriminant analysis and principal component analysis. For the Frankfurt, Germany, dataset, K-nearest neighbours showed the best accuracy of 98.2%, and the Random Forest classifier for the University of California, Irvine, repository showed 99.2%. With such proficiency, the authors thereby propose a statistical approach for the prediction of diabetes in its early stages. They hope to counter the concern of undiagnosed diabetic cases in developing nations where there is a lack of a basic healthcare system." @default.
- W4207077828 created "2022-01-26" @default.
- W4207077828 creator A5006727672 @default.
- W4207077828 creator A5042779633 @default.
- W4207077828 creator A5048894747 @default.
- W4207077828 creator A5054183825 @default.
- W4207077828 creator A5069658778 @default.
- W4207077828 creator A5084693583 @default.
- W4207077828 date "2022-01-21" @default.
- W4207077828 modified "2023-09-30" @default.
- W4207077828 title "Data science appositeness in diabetes mellitus diagnosis for healthcare systems of developing nations" @default.
- W4207077828 cites W1535602073 @default.
- W4207077828 cites W1864224110 @default.
- W4207077828 cites W2128728535 @default.
- W4207077828 cites W2394922069 @default.
- W4207077828 cites W2604615860 @default.
- W4207077828 cites W2763148304 @default.
- W4207077828 cites W2764249947 @default.
- W4207077828 cites W2803696067 @default.
- W4207077828 cites W2889636411 @default.
- W4207077828 cites W2905095075 @default.
- W4207077828 cites W2920905494 @default.
- W4207077828 cites W2937982961 @default.
- W4207077828 cites W2972869264 @default.
- W4207077828 cites W2994732610 @default.
- W4207077828 cites W3002439367 @default.
- W4207077828 cites W3010500903 @default.
- W4207077828 cites W3017335762 @default.
- W4207077828 cites W3022754982 @default.
- W4207077828 cites W3043363778 @default.
- W4207077828 cites W3045975793 @default.
- W4207077828 cites W3046095786 @default.
- W4207077828 cites W3047117862 @default.
- W4207077828 cites W3118255982 @default.
- W4207077828 cites W3126889126 @default.
- W4207077828 doi "https://doi.org/10.1049/cmu2.12338" @default.
- W4207077828 hasPublicationYear "2022" @default.
- W4207077828 type Work @default.
- W4207077828 citedByCount "13" @default.
- W4207077828 countsByYear W42070778282022 @default.
- W4207077828 countsByYear W42070778282023 @default.
- W4207077828 crossrefType "journal-article" @default.
- W4207077828 hasAuthorship W4207077828A5006727672 @default.
- W4207077828 hasAuthorship W4207077828A5042779633 @default.
- W4207077828 hasAuthorship W4207077828A5048894747 @default.
- W4207077828 hasAuthorship W4207077828A5054183825 @default.
- W4207077828 hasAuthorship W4207077828A5069658778 @default.
- W4207077828 hasAuthorship W4207077828A5084693583 @default.
- W4207077828 hasBestOaLocation W42070778281 @default.
- W4207077828 hasConcept C119857082 @default.
- W4207077828 hasConcept C12267149 @default.
- W4207077828 hasConcept C124101348 @default.
- W4207077828 hasConcept C134018914 @default.
- W4207077828 hasConcept C154945302 @default.
- W4207077828 hasConcept C160735492 @default.
- W4207077828 hasConcept C169258074 @default.
- W4207077828 hasConcept C17744445 @default.
- W4207077828 hasConcept C199539241 @default.
- W4207077828 hasConcept C27438332 @default.
- W4207077828 hasConcept C41008148 @default.
- W4207077828 hasConcept C52001869 @default.
- W4207077828 hasConcept C555293320 @default.
- W4207077828 hasConcept C69738355 @default.
- W4207077828 hasConcept C70518039 @default.
- W4207077828 hasConcept C71924100 @default.
- W4207077828 hasConcept C8642999 @default.
- W4207077828 hasConcept C95623464 @default.
- W4207077828 hasConceptScore W4207077828C119857082 @default.
- W4207077828 hasConceptScore W4207077828C12267149 @default.
- W4207077828 hasConceptScore W4207077828C124101348 @default.
- W4207077828 hasConceptScore W4207077828C134018914 @default.
- W4207077828 hasConceptScore W4207077828C154945302 @default.
- W4207077828 hasConceptScore W4207077828C160735492 @default.
- W4207077828 hasConceptScore W4207077828C169258074 @default.
- W4207077828 hasConceptScore W4207077828C17744445 @default.
- W4207077828 hasConceptScore W4207077828C199539241 @default.
- W4207077828 hasConceptScore W4207077828C27438332 @default.
- W4207077828 hasConceptScore W4207077828C41008148 @default.
- W4207077828 hasConceptScore W4207077828C52001869 @default.
- W4207077828 hasConceptScore W4207077828C555293320 @default.
- W4207077828 hasConceptScore W4207077828C69738355 @default.
- W4207077828 hasConceptScore W4207077828C70518039 @default.
- W4207077828 hasConceptScore W4207077828C71924100 @default.
- W4207077828 hasConceptScore W4207077828C8642999 @default.
- W4207077828 hasConceptScore W4207077828C95623464 @default.
- W4207077828 hasIssue "5" @default.
- W4207077828 hasLocation W42070778281 @default.
- W4207077828 hasOpenAccess W4207077828 @default.
- W4207077828 hasPrimaryLocation W42070778281 @default.
- W4207077828 hasRelatedWork W2985924212 @default.
- W4207077828 hasRelatedWork W3168994312 @default.
- W4207077828 hasRelatedWork W3195168932 @default.
- W4207077828 hasRelatedWork W4220956165 @default.
- W4207077828 hasRelatedWork W4221021152 @default.
- W4207077828 hasRelatedWork W4320494184 @default.
- W4207077828 hasRelatedWork W4321488949 @default.
- W4207077828 hasRelatedWork W4375930479 @default.
- W4207077828 hasRelatedWork W4377964522 @default.