Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207082204> ?p ?o ?g. }
- W4207082204 endingPage "186" @default.
- W4207082204 startingPage "174" @default.
- W4207082204 abstract "To study whether artificial intelligence (AI) technology can be used to discern quantitative differences in endometrial immune cells between cycle phases and between samples from women with polycystic ovary syndrome (PCOS) and non-PCOS controls. Only a few studies have analyzed endometrial histology using AI technology, and especially, studies of the PCOS endometrium are lacking, partly because of the technically challenging analysis and unavailability of well-phenotyped samples. Novel AI technologies can overcome this problem.Case-control study.University hospital-based research laboratory.Forty-eight women with PCOS and 43 controls. Proliferative phase samples (26 control and 23 PCOS) and luteinizing hormone (LH) surge timed LH+ 7-9 (10 control and 16 PCOS) and LH+ 10-12 (7 control and 9 PCOS) secretory endometrial samples were collected during 2014-2019.None.Endometrial samples were stained with antibodies for CD8+ T cells, CD56+ uterine natural killer cells, CD68+ macrophages, and proliferation marker Ki67. Scanned whole slide images were analyzed with an AI deep learning model. Cycle phase differences in leukocyte counts, proliferation rate, and endometrial thickness were measured within the study populations and between the PCOS and control samples. A subanalysis of anovulatory PCOS samples (n = 11) vs. proliferative phase controls (n = 18) was also performed.Automated cell counting with a deep learning model performs well for the human endometrium. The leukocyte numbers and proliferation in the endometrium fluctuate with the menstrual cycle. Differences in leukocyte counts were not observed between the whole PCOS population and controls. However, anovulatory women with PCOS presented with a higher number of CD68+ cells in the epithelium (controls vs. PCOS, median [interquartile range], 0.92 [0.75-1.51] vs. 1.97 [1.12-2.68]) and fewer leukocytes in the stroma (CD8%, 3.72 [2.18-4.20] vs. 1.44 [0.77-3.03]; CD56%, 6.36 [4.43-7.43] vs. 2.07 [0.65-4.99]; CD68%, 4.57 [3.92-5.70] vs. 3.07 [1.73-4.59], respectively) compared with the controls. The endometrial thickness and proliferation rate were comparable between the PCOS and control groups in all cycle phases.Artificial intelligence technology provides a powerful tool for endometrial research because it is objective and can efficiently analyze endometrial compartments separately. Ovulatory endometrium from women with PCOS did not differ remarkably from the controls, which may indicate that gaining ovulatory cycles normalizes the PCOS endometrium and enables normalization of leukocyte environment before implantation. Deviant endometrial leukocyte populations observed in anovulatory women with PCOS could be interrelated with the altered endometrial function observed in these women." @default.
- W4207082204 created "2022-01-26" @default.
- W4207082204 creator A5001662659 @default.
- W4207082204 creator A5002678517 @default.
- W4207082204 creator A5004917743 @default.
- W4207082204 creator A5013753621 @default.
- W4207082204 creator A5015255932 @default.
- W4207082204 creator A5033059885 @default.
- W4207082204 creator A5033369161 @default.
- W4207082204 creator A5064023714 @default.
- W4207082204 creator A5085070599 @default.
- W4207082204 creator A5090768965 @default.
- W4207082204 date "2022-05-01" @default.
- W4207082204 modified "2023-10-15" @default.
- W4207082204 title "AI deep learning model assessment of leucocyte counts and proliferation in non-PCOS and PCOS endometrium" @default.
- W4207082204 cites W1772147602 @default.
- W4207082204 cites W1986778316 @default.
- W4207082204 cites W1987758321 @default.
- W4207082204 cites W1989776554 @default.
- W4207082204 cites W2006219744 @default.
- W4207082204 cites W2015603949 @default.
- W4207082204 cites W2028676943 @default.
- W4207082204 cites W2044185104 @default.
- W4207082204 cites W2047203711 @default.
- W4207082204 cites W2059216586 @default.
- W4207082204 cites W2075846272 @default.
- W4207082204 cites W2080823919 @default.
- W4207082204 cites W2090942716 @default.
- W4207082204 cites W2098409670 @default.
- W4207082204 cites W2101278668 @default.
- W4207082204 cites W2113610605 @default.
- W4207082204 cites W2133883611 @default.
- W4207082204 cites W2135186145 @default.
- W4207082204 cites W2137852967 @default.
- W4207082204 cites W2143841612 @default.
- W4207082204 cites W2148400658 @default.
- W4207082204 cites W2150371504 @default.
- W4207082204 cites W2152401226 @default.
- W4207082204 cites W2154248317 @default.
- W4207082204 cites W2157929167 @default.
- W4207082204 cites W2160898813 @default.
- W4207082204 cites W2167164284 @default.
- W4207082204 cites W2322902399 @default.
- W4207082204 cites W2346727301 @default.
- W4207082204 cites W2565868576 @default.
- W4207082204 cites W2765587071 @default.
- W4207082204 cites W2912316977 @default.
- W4207082204 cites W2946310407 @default.
- W4207082204 cites W2952452899 @default.
- W4207082204 cites W2954200501 @default.
- W4207082204 cites W2958281396 @default.
- W4207082204 cites W3105161020 @default.
- W4207082204 cites W3128972504 @default.
- W4207082204 cites W4212784858 @default.
- W4207082204 doi "https://doi.org/10.1016/j.xfss.2022.01.006" @default.
- W4207082204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35560015" @default.
- W4207082204 hasPublicationYear "2022" @default.
- W4207082204 type Work @default.
- W4207082204 citedByCount "1" @default.
- W4207082204 countsByYear W42070822042022 @default.
- W4207082204 crossrefType "journal-article" @default.
- W4207082204 hasAuthorship W4207082204A5001662659 @default.
- W4207082204 hasAuthorship W4207082204A5002678517 @default.
- W4207082204 hasAuthorship W4207082204A5004917743 @default.
- W4207082204 hasAuthorship W4207082204A5013753621 @default.
- W4207082204 hasAuthorship W4207082204A5015255932 @default.
- W4207082204 hasAuthorship W4207082204A5033059885 @default.
- W4207082204 hasAuthorship W4207082204A5033369161 @default.
- W4207082204 hasAuthorship W4207082204A5064023714 @default.
- W4207082204 hasAuthorship W4207082204A5085070599 @default.
- W4207082204 hasAuthorship W4207082204A5090768965 @default.
- W4207082204 hasBestOaLocation W42070822041 @default.
- W4207082204 hasConcept C126322002 @default.
- W4207082204 hasConcept C134018914 @default.
- W4207082204 hasConcept C16685009 @default.
- W4207082204 hasConcept C187785154 @default.
- W4207082204 hasConcept C2778575703 @default.
- W4207082204 hasConcept C2779058012 @default.
- W4207082204 hasConcept C2779742232 @default.
- W4207082204 hasConcept C2908647359 @default.
- W4207082204 hasConcept C71315377 @default.
- W4207082204 hasConcept C71924100 @default.
- W4207082204 hasConcept C86803240 @default.
- W4207082204 hasConcept C99454951 @default.
- W4207082204 hasConceptScore W4207082204C126322002 @default.
- W4207082204 hasConceptScore W4207082204C134018914 @default.
- W4207082204 hasConceptScore W4207082204C16685009 @default.
- W4207082204 hasConceptScore W4207082204C187785154 @default.
- W4207082204 hasConceptScore W4207082204C2778575703 @default.
- W4207082204 hasConceptScore W4207082204C2779058012 @default.
- W4207082204 hasConceptScore W4207082204C2779742232 @default.
- W4207082204 hasConceptScore W4207082204C2908647359 @default.
- W4207082204 hasConceptScore W4207082204C71315377 @default.
- W4207082204 hasConceptScore W4207082204C71924100 @default.
- W4207082204 hasConceptScore W4207082204C86803240 @default.
- W4207082204 hasConceptScore W4207082204C99454951 @default.
- W4207082204 hasFunder F4320311816 @default.
- W4207082204 hasFunder F4320321108 @default.