Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207085178> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4207085178 abstract "Unmanned Aerial Vehicles (UAV) have gained major attention in recent years due to its numerous benefits. The navigation of UAVs is heavily reliant on sensors such as the Global Positioning System (GPS). However, sensor attacks that specifically target the GPS are a major concern. Equipment such as the software-defined radio can be used to launch GPS spoofing attacks. Existing techniques used to monitor the GPS and channel characteristics as a way to detect these attacks are insufficient due to the clear knowledge of the structure of GPS and channel characteristics which gives adversaries a blueprint to launch stealthy attacks. In this work, we developed various deep learning models that rely on UAV flight logs and telemetry data to detect GPS spoofing attacks in real time. We generate UAV data for different UAV models and use the data to train the models to detect the GPS spoofing attacks through classification. We developed two types of detectors: a Long Short-Term Memory (LSTM) binary classifier and an LSTM autoencoder-based one-class classifier (OCC). For each type, we compared two variations namely a UAV-specific detector that is customized for different UAV types and a UAV-generalized detector that can work with any model of UAV. We test and compare the efficiency of detection models in simulation. Hardware validation experiments were also performed using Intel® NCS2. For the binary classifier, we get a detection accuracy of 97.79% for the UAV-generalized detector and up to 99.56% for the UAV-model-specific detector. While for the OCC, we get 94.98% for the UAV-generalized detector and up to 99.24% for the UAV-model-specific detector." @default.
- W4207085178 created "2022-01-26" @default.
- W4207085178 creator A5024441819 @default.
- W4207085178 creator A5047883853 @default.
- W4207085178 creator A5050734382 @default.
- W4207085178 creator A5054416654 @default.
- W4207085178 creator A5071446974 @default.
- W4207085178 date "2021-12-05" @default.
- W4207085178 modified "2023-09-29" @default.
- W4207085178 title "Efficient Detection of GPS Spoofing Attacks on Unmanned Aerial Vehicles Using Deep Learning" @default.
- W4207085178 cites W1576648175 @default.
- W4207085178 cites W1943499898 @default.
- W4207085178 cites W1966614305 @default.
- W4207085178 cites W2074040836 @default.
- W4207085178 cites W2102148524 @default.
- W4207085178 cites W2111689038 @default.
- W4207085178 cites W2130423988 @default.
- W4207085178 cites W2159470227 @default.
- W4207085178 cites W2169337892 @default.
- W4207085178 cites W2302425682 @default.
- W4207085178 cites W2332630870 @default.
- W4207085178 cites W2346214124 @default.
- W4207085178 cites W2765906326 @default.
- W4207085178 cites W2938880258 @default.
- W4207085178 cites W2955125114 @default.
- W4207085178 cites W2983403079 @default.
- W4207085178 cites W3108599538 @default.
- W4207085178 cites W3134625107 @default.
- W4207085178 doi "https://doi.org/10.1109/ssci50451.2021.9659972" @default.
- W4207085178 hasPublicationYear "2021" @default.
- W4207085178 type Work @default.
- W4207085178 citedByCount "6" @default.
- W4207085178 countsByYear W42070851782022 @default.
- W4207085178 countsByYear W42070851782023 @default.
- W4207085178 crossrefType "proceedings-article" @default.
- W4207085178 hasAuthorship W4207085178A5024441819 @default.
- W4207085178 hasAuthorship W4207085178A5047883853 @default.
- W4207085178 hasAuthorship W4207085178A5050734382 @default.
- W4207085178 hasAuthorship W4207085178A5054416654 @default.
- W4207085178 hasAuthorship W4207085178A5071446974 @default.
- W4207085178 hasConcept C101738243 @default.
- W4207085178 hasConcept C108583219 @default.
- W4207085178 hasConcept C14279187 @default.
- W4207085178 hasConcept C154945302 @default.
- W4207085178 hasConcept C167900197 @default.
- W4207085178 hasConcept C38652104 @default.
- W4207085178 hasConcept C41008148 @default.
- W4207085178 hasConcept C60229501 @default.
- W4207085178 hasConcept C76155785 @default.
- W4207085178 hasConcept C79403827 @default.
- W4207085178 hasConcept C94915269 @default.
- W4207085178 hasConcept C95623464 @default.
- W4207085178 hasConceptScore W4207085178C101738243 @default.
- W4207085178 hasConceptScore W4207085178C108583219 @default.
- W4207085178 hasConceptScore W4207085178C14279187 @default.
- W4207085178 hasConceptScore W4207085178C154945302 @default.
- W4207085178 hasConceptScore W4207085178C167900197 @default.
- W4207085178 hasConceptScore W4207085178C38652104 @default.
- W4207085178 hasConceptScore W4207085178C41008148 @default.
- W4207085178 hasConceptScore W4207085178C60229501 @default.
- W4207085178 hasConceptScore W4207085178C76155785 @default.
- W4207085178 hasConceptScore W4207085178C79403827 @default.
- W4207085178 hasConceptScore W4207085178C94915269 @default.
- W4207085178 hasConceptScore W4207085178C95623464 @default.
- W4207085178 hasFunder F4320306076 @default.
- W4207085178 hasFunder F4320306101 @default.
- W4207085178 hasLocation W42070851781 @default.
- W4207085178 hasOpenAccess W4207085178 @default.
- W4207085178 hasPrimaryLocation W42070851781 @default.
- W4207085178 hasRelatedWork W2598630260 @default.
- W4207085178 hasRelatedWork W2669956259 @default.
- W4207085178 hasRelatedWork W2939353110 @default.
- W4207085178 hasRelatedWork W3165097609 @default.
- W4207085178 hasRelatedWork W3165463024 @default.
- W4207085178 hasRelatedWork W3200530419 @default.
- W4207085178 hasRelatedWork W4283310730 @default.
- W4207085178 hasRelatedWork W4287178339 @default.
- W4207085178 hasRelatedWork W4292874285 @default.
- W4207085178 hasRelatedWork W4327774331 @default.
- W4207085178 isParatext "false" @default.
- W4207085178 isRetracted "false" @default.
- W4207085178 workType "article" @default.