Matches in SemOpenAlex for { <https://semopenalex.org/work/W4207085514> ?p ?o ?g. }
- W4207085514 abstract "Abstract Tree transpiration is an important water movement process in forest ecosystems, and it plays a decisive role in the coupling feedback of hydrological and ecological processes. Therefore, identifying the impact of different factors on sap flow can promote efficient water management and improve assessment of the climate change impacts. However, the interaction between sap flow and control factors is not clear, and there is no accurate model to predict sap flow change of Picea crassifolia Kom. This study explored the correlation between sap flow and environmental factors and compared the performances of the back‐propagation neural network (BP ANN ) and multiple regression (MLR) models, and the importance of the time‐lag effect and different soil moisture conditions in the response mechanism of sap flow was also explained. A higher fitting performance was found in the BP ANN model ( R 2 > 0.90) based on the relationships between air temperature (Ta), air relative humidity (RH), solar radiation (Rn) and vapour pressure deficit (VPD) and sap flux density ( Q ) than that MLR ( R 2 = 0.8915). The correlation was improved due to the consideration of time‐lag effect. Other variables, such as maximum temperature (Tmax), wind speed (WS) and precipitation (P), explained smaller portions of the variance in sap flow, while minimum temperature (Tmin) and leaf area index (LAI) had almost no effect. Moreover, the R 2 of the water stress condition (REW <0.38) was lower than that of the non‐water stress condition (REW ≥0.38), and even lower than the R 2 of the whole experimental period. Therefore, the sap flow prediction model based on BP ANN could more reasonably explain the nonlinear relationship between transpiration and control factors, which provided a basis for the estimation of plant water‐use and the construction and management of ecological vegetation in alpine arid and semi‐arid areas, especially in response to the continuous enhancement of aridification and climate warming." @default.
- W4207085514 created "2022-01-26" @default.
- W4207085514 creator A5014708668 @default.
- W4207085514 creator A5037600484 @default.
- W4207085514 creator A5043156169 @default.
- W4207085514 creator A5080764611 @default.
- W4207085514 date "2022-02-01" @default.
- W4207085514 modified "2023-10-16" @default.
- W4207085514 title "The accuracy improvement of sap flow prediction in <i>Picea crassifolia</i> Kom. based on the back‐propagation neural network model" @default.
- W4207085514 cites W1913309436 @default.
- W4207085514 cites W1967908223 @default.
- W4207085514 cites W1992453431 @default.
- W4207085514 cites W1996324178 @default.
- W4207085514 cites W2000899403 @default.
- W4207085514 cites W2003545460 @default.
- W4207085514 cites W2012424153 @default.
- W4207085514 cites W2017285709 @default.
- W4207085514 cites W2018043145 @default.
- W4207085514 cites W2028924627 @default.
- W4207085514 cites W2032495377 @default.
- W4207085514 cites W2049307993 @default.
- W4207085514 cites W2052947666 @default.
- W4207085514 cites W2061321510 @default.
- W4207085514 cites W2073757536 @default.
- W4207085514 cites W2080563066 @default.
- W4207085514 cites W2081672895 @default.
- W4207085514 cites W2085198102 @default.
- W4207085514 cites W2095342502 @default.
- W4207085514 cites W2102717943 @default.
- W4207085514 cites W2103213004 @default.
- W4207085514 cites W2107551404 @default.
- W4207085514 cites W2111044572 @default.
- W4207085514 cites W2126684506 @default.
- W4207085514 cites W2136328991 @default.
- W4207085514 cites W2166186402 @default.
- W4207085514 cites W2167644574 @default.
- W4207085514 cites W2168298211 @default.
- W4207085514 cites W2181329971 @default.
- W4207085514 cites W2320723227 @default.
- W4207085514 cites W2324411590 @default.
- W4207085514 cites W2531678419 @default.
- W4207085514 cites W2604291725 @default.
- W4207085514 cites W2801277411 @default.
- W4207085514 cites W2883729084 @default.
- W4207085514 cites W2901406837 @default.
- W4207085514 cites W2904884829 @default.
- W4207085514 cites W2926547413 @default.
- W4207085514 cites W2947798578 @default.
- W4207085514 cites W2950240495 @default.
- W4207085514 cites W2954046975 @default.
- W4207085514 cites W2968050111 @default.
- W4207085514 cites W2969551712 @default.
- W4207085514 cites W2981216696 @default.
- W4207085514 cites W3011147594 @default.
- W4207085514 cites W3028801464 @default.
- W4207085514 cites W3033626396 @default.
- W4207085514 cites W3034878022 @default.
- W4207085514 cites W3187984808 @default.
- W4207085514 doi "https://doi.org/10.1002/hyp.14490" @default.
- W4207085514 hasPublicationYear "2022" @default.
- W4207085514 type Work @default.
- W4207085514 citedByCount "1" @default.
- W4207085514 countsByYear W42070855142023 @default.
- W4207085514 crossrefType "journal-article" @default.
- W4207085514 hasAuthorship W4207085514A5014708668 @default.
- W4207085514 hasAuthorship W4207085514A5037600484 @default.
- W4207085514 hasAuthorship W4207085514A5043156169 @default.
- W4207085514 hasAuthorship W4207085514A5080764611 @default.
- W4207085514 hasConcept C105795698 @default.
- W4207085514 hasConcept C107054158 @default.
- W4207085514 hasConcept C121332964 @default.
- W4207085514 hasConcept C127413603 @default.
- W4207085514 hasConcept C14331020 @default.
- W4207085514 hasConcept C147534773 @default.
- W4207085514 hasConcept C153294291 @default.
- W4207085514 hasConcept C157517311 @default.
- W4207085514 hasConcept C158960510 @default.
- W4207085514 hasConcept C161067210 @default.
- W4207085514 hasConcept C183688256 @default.
- W4207085514 hasConcept C185592680 @default.
- W4207085514 hasConcept C187320778 @default.
- W4207085514 hasConcept C197843891 @default.
- W4207085514 hasConcept C205649164 @default.
- W4207085514 hasConcept C24939127 @default.
- W4207085514 hasConcept C2524010 @default.
- W4207085514 hasConcept C2780092901 @default.
- W4207085514 hasConcept C31258907 @default.
- W4207085514 hasConcept C33923547 @default.
- W4207085514 hasConcept C38349280 @default.
- W4207085514 hasConcept C39432304 @default.
- W4207085514 hasConcept C41008148 @default.
- W4207085514 hasConcept C48921125 @default.
- W4207085514 hasConcept C55493867 @default.
- W4207085514 hasConcept C75778745 @default.
- W4207085514 hasConcept C76886044 @default.
- W4207085514 hasConcept C91586092 @default.
- W4207085514 hasConceptScore W4207085514C105795698 @default.
- W4207085514 hasConceptScore W4207085514C107054158 @default.
- W4207085514 hasConceptScore W4207085514C121332964 @default.
- W4207085514 hasConceptScore W4207085514C127413603 @default.