Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210247798> ?p ?o ?g. }
- W4210247798 endingPage "1408" @default.
- W4210247798 startingPage "1395" @default.
- W4210247798 abstract "In this paper, the design problem of distributed filters is studied for nonlinear systems over sensor networks. At each sensor node, filters are designed by making use of both local measurements and innovation information sent from the neighboring nodes via interaction network. To mitigate adverse effects from abnormal data during transmissions, in the constructed local filters, a mechanism is proposed which utilizes a saturation function to constrain the propagated innovations within a dynamically changeable bound. A neural-network-based algorithm is used for the approximation of the nonlinear dynamics, where the weight matrix is co-designed with the filter gains. By resorting to certain convex optimization techniques, sufficient conditions are determined with respect to the solvability of our addressed problem, which ensure that 1) the estimation errors at each sensor node are confined within a pre-specified ellipsoidal region; and 2) the finite-horizon <inline-formula><tex-math notation=LaTeX>$H_{infty }$</tex-math></inline-formula> performance specification is achieved. Moreover, within the established framework, an optimal problem is established to determine a locally optimal filter gain. Finally, a simulation example is given to demonstrate the correctness of the proposed filtering algorithm." @default.
- W4210247798 created "2022-02-08" @default.
- W4210247798 creator A5019580006 @default.
- W4210247798 creator A5048831651 @default.
- W4210247798 creator A5067275668 @default.
- W4210247798 creator A5080263475 @default.
- W4210247798 creator A5090210020 @default.
- W4210247798 date "2022-05-01" @default.
- W4210247798 modified "2023-10-15" @default.
- W4210247798 title "Neural-Network-Based Filtering for A General Class of Nonlinear Systems under Dynamically Bounded Innovations Over Sensor Networks" @default.
- W4210247798 cites W1528184823 @default.
- W4210247798 cites W1966891634 @default.
- W4210247798 cites W1993595542 @default.
- W4210247798 cites W2002532488 @default.
- W4210247798 cites W2009127148 @default.
- W4210247798 cites W2020968226 @default.
- W4210247798 cites W2040107315 @default.
- W4210247798 cites W2062132646 @default.
- W4210247798 cites W2064937482 @default.
- W4210247798 cites W2103988321 @default.
- W4210247798 cites W2112015490 @default.
- W4210247798 cites W2150680928 @default.
- W4210247798 cites W2153890087 @default.
- W4210247798 cites W2155876893 @default.
- W4210247798 cites W2334643484 @default.
- W4210247798 cites W2344965122 @default.
- W4210247798 cites W2523471397 @default.
- W4210247798 cites W2592448769 @default.
- W4210247798 cites W2617776034 @default.
- W4210247798 cites W2747057594 @default.
- W4210247798 cites W2753947211 @default.
- W4210247798 cites W2765454335 @default.
- W4210247798 cites W2768676735 @default.
- W4210247798 cites W2770337865 @default.
- W4210247798 cites W2771589942 @default.
- W4210247798 cites W2775725652 @default.
- W4210247798 cites W2800384809 @default.
- W4210247798 cites W2884792986 @default.
- W4210247798 cites W2896819564 @default.
- W4210247798 cites W2910473178 @default.
- W4210247798 cites W2940624183 @default.
- W4210247798 cites W2951782192 @default.
- W4210247798 cites W2952432856 @default.
- W4210247798 cites W2958459421 @default.
- W4210247798 cites W2959027807 @default.
- W4210247798 cites W2971723304 @default.
- W4210247798 cites W2995984855 @default.
- W4210247798 cites W3016584303 @default.
- W4210247798 cites W3024491619 @default.
- W4210247798 cites W3089092830 @default.
- W4210247798 cites W3095694471 @default.
- W4210247798 cites W3122244891 @default.
- W4210247798 cites W3128971145 @default.
- W4210247798 cites W3135557963 @default.
- W4210247798 cites W3138406224 @default.
- W4210247798 cites W3150815575 @default.
- W4210247798 cites W3153728346 @default.
- W4210247798 cites W3153908899 @default.
- W4210247798 cites W3162262062 @default.
- W4210247798 cites W3164290326 @default.
- W4210247798 cites W3177831012 @default.
- W4210247798 cites W3182652643 @default.
- W4210247798 cites W3189578536 @default.
- W4210247798 cites W3192303798 @default.
- W4210247798 cites W3201681013 @default.
- W4210247798 cites W3210839039 @default.
- W4210247798 cites W3213262283 @default.
- W4210247798 doi "https://doi.org/10.1109/tnse.2022.3144484" @default.
- W4210247798 hasPublicationYear "2022" @default.
- W4210247798 type Work @default.
- W4210247798 citedByCount "8" @default.
- W4210247798 countsByYear W42102477982022 @default.
- W4210247798 countsByYear W42102477982023 @default.
- W4210247798 crossrefType "journal-article" @default.
- W4210247798 hasAuthorship W4210247798A5019580006 @default.
- W4210247798 hasAuthorship W4210247798A5048831651 @default.
- W4210247798 hasAuthorship W4210247798A5067275668 @default.
- W4210247798 hasAuthorship W4210247798A5080263475 @default.
- W4210247798 hasAuthorship W4210247798A5090210020 @default.
- W4210247798 hasConcept C106131492 @default.
- W4210247798 hasConcept C112680207 @default.
- W4210247798 hasConcept C11413529 @default.
- W4210247798 hasConcept C121332964 @default.
- W4210247798 hasConcept C126255220 @default.
- W4210247798 hasConcept C127413603 @default.
- W4210247798 hasConcept C134306372 @default.
- W4210247798 hasConcept C138885662 @default.
- W4210247798 hasConcept C154945302 @default.
- W4210247798 hasConcept C157972887 @default.
- W4210247798 hasConcept C158622935 @default.
- W4210247798 hasConcept C207390915 @default.
- W4210247798 hasConcept C22597639 @default.
- W4210247798 hasConcept C24590314 @default.
- W4210247798 hasConcept C2524010 @default.
- W4210247798 hasConcept C2775924081 @default.
- W4210247798 hasConcept C31258907 @default.
- W4210247798 hasConcept C31972630 @default.
- W4210247798 hasConcept C33923547 @default.