Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210260531> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4210260531 abstract "<sec> <title>BACKGROUND</title> Novel influenza surveillance systems that leverage Internet-based real-time data sources including Internet search frequencies, social-network information, and crowd-sourced flu surveillance tools have shown improved accuracy over the past few years in data-rich countries like the United States. These systems not only track flu activity accurately, but they also report flu estimates a week or more ahead of the publication of reports produced by healthcare-based systems, such as those implemented and managed by the Centers for Disease Control and Prevention. Previous work has shown that the predictive capabilities of novel flu surveillance systems, like Google Flu Trends (GFT), in developing countries in Latin America have not yet delivered acceptable flu estimates. </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to show that recent methodological improvements on the use of Internet search engine information to track diseases can lead to improved retrospective flu estimates in multiple countries in Latin America. </sec> <sec> <title>METHODS</title> A machine learning-based methodology that uses flu-related Internet search activity and historical information to monitor flu activity, named ARGO (AutoRegression with Google search), was extended to generate flu predictions for 8 Latin American countries (Argentina, Bolivia, Brazil, Chile, Mexico, Paraguay, Peru, and Uruguay) for the time period: January 2012 to December of 2016. These retrospective (out-of-sample) Influenza activity predictions were compared with historically observed flu suspected cases in each country, as reported by Flunet, an influenza surveillance database maintained by the World Health Organization. For a baseline comparison, retrospective (out-of-sample) flu estimates were produced for the same time period using autoregressive models that only leverage historical flu activity information. </sec> <sec> <title>RESULTS</title> Our results show that ARGO-like models’ predictive power outperform autoregressive models in 6 out of 8 countries in the 2012-2016 time period. Moreover, ARGO significantly improves on historical flu estimates produced by the now discontinued GFT for the time period of 2012-2015, where GFT information is publicly available. </sec> <sec> <title>CONCLUSIONS</title> We demonstrate here that a self-correcting machine learning method, leveraging Internet-based disease-related search activity and historical flu trends, has the potential to produce reliable and timely flu estimates in multiple Latin American countries. This methodology may prove helpful to local public health officials who design and implement interventions aimed at mitigating the effects of influenza outbreaks. Our methodology generally outperforms both the now-discontinued tool GFT, and autoregressive methodologies that exploit only historical flu activity to produce future disease estimates. </sec>" @default.
- W4210260531 created "2022-02-08" @default.
- W4210260531 creator A5024385868 @default.
- W4210260531 creator A5069001141 @default.
- W4210260531 creator A5084309612 @default.
- W4210260531 date "2018-09-14" @default.
- W4210260531 modified "2023-09-24" @default.
- W4210260531 title "Improved Real-Time Influenza Surveillance: Using Internet Search Data in Eight Latin American Countries (Preprint)" @default.
- W4210260531 doi "https://doi.org/10.2196/preprints.12214" @default.
- W4210260531 hasPublicationYear "2018" @default.
- W4210260531 type Work @default.
- W4210260531 citedByCount "0" @default.
- W4210260531 crossrefType "posted-content" @default.
- W4210260531 hasAuthorship W4210260531A5024385868 @default.
- W4210260531 hasAuthorship W4210260531A5069001141 @default.
- W4210260531 hasAuthorship W4210260531A5084309612 @default.
- W4210260531 hasBestOaLocation W42102605312 @default.
- W4210260531 hasConcept C110875604 @default.
- W4210260531 hasConcept C136764020 @default.
- W4210260531 hasConcept C144133560 @default.
- W4210260531 hasConcept C158886217 @default.
- W4210260531 hasConcept C17744445 @default.
- W4210260531 hasConcept C199539241 @default.
- W4210260531 hasConcept C205649164 @default.
- W4210260531 hasConcept C41008148 @default.
- W4210260531 hasConcept C71924100 @default.
- W4210260531 hasConceptScore W4210260531C110875604 @default.
- W4210260531 hasConceptScore W4210260531C136764020 @default.
- W4210260531 hasConceptScore W4210260531C144133560 @default.
- W4210260531 hasConceptScore W4210260531C158886217 @default.
- W4210260531 hasConceptScore W4210260531C17744445 @default.
- W4210260531 hasConceptScore W4210260531C199539241 @default.
- W4210260531 hasConceptScore W4210260531C205649164 @default.
- W4210260531 hasConceptScore W4210260531C41008148 @default.
- W4210260531 hasConceptScore W4210260531C71924100 @default.
- W4210260531 hasLocation W42102605311 @default.
- W4210260531 hasLocation W42102605312 @default.
- W4210260531 hasOpenAccess W4210260531 @default.
- W4210260531 hasPrimaryLocation W42102605311 @default.
- W4210260531 hasRelatedWork W105902 @default.
- W4210260531 hasRelatedWork W1304870 @default.
- W4210260531 hasRelatedWork W2138837520 @default.
- W4210260531 hasRelatedWork W2967350 @default.
- W4210260531 hasRelatedWork W4545053 @default.
- W4210260531 hasRelatedWork W5094302 @default.
- W4210260531 hasRelatedWork W5241709 @default.
- W4210260531 hasRelatedWork W6993340 @default.
- W4210260531 hasRelatedWork W7221495 @default.
- W4210260531 hasRelatedWork W9146596 @default.
- W4210260531 isParatext "false" @default.
- W4210260531 isRetracted "false" @default.
- W4210260531 workType "article" @default.