Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210265004> ?p ?o ?g. }
- W4210265004 abstract "Microalbuminuria (MAU) occurs due to universal endothelial damage, which is strongly associated with kidney disease, stroke, myocardial infarction, and coronary artery disease. Screening patients at high risk for MAU may aid in the early identification of individuals with an increased risk of cardiovascular events and mortality. Hence, the present study aimed to establish a risk model for MAU by applying machine learning algorithms.This cross-sectional study included 3,294 participants ranging in age from 16 to 93 years. R software was used to analyze missing values and to perform multiple imputation. The observed population was divided into a training set and a validation set according to a ratio of 7:3. The first risk model was constructed using the prepared data, following which variables with P <0.1 were extracted to build the second risk model. The second-stage model was then analyzed using a chi-square test, in which a P ≥ 0.05 was considered to indicate no difference in the fit of the models. Variables with P <0.05 in the second-stage model were considered important features related to the prevalence of MAU. A confusion matrix and calibration curve were used to evaluate the validity and reliability of the model. A series of risk prediction scores were established based on machine learning algorithms.Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), triglyceride (TG) levels, sex, age, and smoking were identified as predictors of MAU prevalence. Verification using a chi-square test, confusion matrix, and calibration curve indicated that the risk of MAU could be predicted based on the risk score.Based on the ability of our machine learning algorithm to establish an effective risk score, we propose that comprehensive assessments of SBP, DBP, FBG, TG, gender, age, and smoking should be included in the screening process for MAU." @default.
- W4210265004 created "2022-02-08" @default.
- W4210265004 creator A5010643810 @default.
- W4210265004 creator A5012974470 @default.
- W4210265004 creator A5015208505 @default.
- W4210265004 creator A5040191019 @default.
- W4210265004 creator A5069001655 @default.
- W4210265004 creator A5074014514 @default.
- W4210265004 date "2022-02-07" @default.
- W4210265004 modified "2023-10-14" @default.
- W4210265004 title "Development of a Risk Model for Predicting Microalbuminuria in the Chinese Population Using Machine Learning Algorithms" @default.
- W4210265004 cites W159198585 @default.
- W4210265004 cites W1988458747 @default.
- W4210265004 cites W1996141009 @default.
- W4210265004 cites W2001096336 @default.
- W4210265004 cites W2010116948 @default.
- W4210265004 cites W2041815755 @default.
- W4210265004 cites W2056319298 @default.
- W4210265004 cites W2057133669 @default.
- W4210265004 cites W2077779568 @default.
- W4210265004 cites W2106761290 @default.
- W4210265004 cites W2124620553 @default.
- W4210265004 cites W2148618043 @default.
- W4210265004 cites W2160234571 @default.
- W4210265004 cites W2279419135 @default.
- W4210265004 cites W2316975995 @default.
- W4210265004 cites W2324579467 @default.
- W4210265004 cites W2335888212 @default.
- W4210265004 cites W2397627098 @default.
- W4210265004 cites W2563698458 @default.
- W4210265004 cites W2586587001 @default.
- W4210265004 cites W2586758361 @default.
- W4210265004 cites W2607031541 @default.
- W4210265004 cites W2885850102 @default.
- W4210265004 cites W2899879794 @default.
- W4210265004 cites W2926369480 @default.
- W4210265004 cites W2937722057 @default.
- W4210265004 cites W2946415573 @default.
- W4210265004 cites W3030811327 @default.
- W4210265004 cites W3092087936 @default.
- W4210265004 cites W3094157001 @default.
- W4210265004 cites W3097387644 @default.
- W4210265004 cites W3135274387 @default.
- W4210265004 cites W3135801509 @default.
- W4210265004 cites W3137803465 @default.
- W4210265004 cites W3153842120 @default.
- W4210265004 cites W3208566107 @default.
- W4210265004 doi "https://doi.org/10.3389/fmed.2022.775275" @default.
- W4210265004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35198573" @default.
- W4210265004 hasPublicationYear "2022" @default.
- W4210265004 type Work @default.
- W4210265004 citedByCount "1" @default.
- W4210265004 crossrefType "journal-article" @default.
- W4210265004 hasAuthorship W4210265004A5010643810 @default.
- W4210265004 hasAuthorship W4210265004A5012974470 @default.
- W4210265004 hasAuthorship W4210265004A5015208505 @default.
- W4210265004 hasAuthorship W4210265004A5040191019 @default.
- W4210265004 hasAuthorship W4210265004A5069001655 @default.
- W4210265004 hasAuthorship W4210265004A5074014514 @default.
- W4210265004 hasBestOaLocation W42102650041 @default.
- W4210265004 hasConcept C11413529 @default.
- W4210265004 hasConcept C119857082 @default.
- W4210265004 hasConcept C126322002 @default.
- W4210265004 hasConcept C138602881 @default.
- W4210265004 hasConcept C154945302 @default.
- W4210265004 hasConcept C17140001 @default.
- W4210265004 hasConcept C2781203188 @default.
- W4210265004 hasConcept C2908647359 @default.
- W4210265004 hasConcept C41008148 @default.
- W4210265004 hasConcept C71924100 @default.
- W4210265004 hasConcept C84393581 @default.
- W4210265004 hasConcept C99454951 @default.
- W4210265004 hasConceptScore W4210265004C11413529 @default.
- W4210265004 hasConceptScore W4210265004C119857082 @default.
- W4210265004 hasConceptScore W4210265004C126322002 @default.
- W4210265004 hasConceptScore W4210265004C138602881 @default.
- W4210265004 hasConceptScore W4210265004C154945302 @default.
- W4210265004 hasConceptScore W4210265004C17140001 @default.
- W4210265004 hasConceptScore W4210265004C2781203188 @default.
- W4210265004 hasConceptScore W4210265004C2908647359 @default.
- W4210265004 hasConceptScore W4210265004C41008148 @default.
- W4210265004 hasConceptScore W4210265004C71924100 @default.
- W4210265004 hasConceptScore W4210265004C84393581 @default.
- W4210265004 hasConceptScore W4210265004C99454951 @default.
- W4210265004 hasFunder F4320321878 @default.
- W4210265004 hasFunder F4320335777 @default.
- W4210265004 hasLocation W42102650041 @default.
- W4210265004 hasLocation W42102650042 @default.
- W4210265004 hasLocation W42102650043 @default.
- W4210265004 hasLocation W42102650044 @default.
- W4210265004 hasOpenAccess W4210265004 @default.
- W4210265004 hasPrimaryLocation W42102650041 @default.
- W4210265004 hasRelatedWork W1685922288 @default.
- W4210265004 hasRelatedWork W2025236104 @default.
- W4210265004 hasRelatedWork W2375364141 @default.
- W4210265004 hasRelatedWork W2380237961 @default.
- W4210265004 hasRelatedWork W2381029476 @default.
- W4210265004 hasRelatedWork W2580834797 @default.
- W4210265004 hasRelatedWork W2945485881 @default.
- W4210265004 hasRelatedWork W4231994957 @default.