Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210270710> ?p ?o ?g. }
- W4210270710 abstract "The displacement-based back-analysis is an effective approach to determine the values of soil parameters of a slope. However, the applicability of different methods of the displacement-based back-analysis varies. This paper divides the displacement-based back-analysis into the deterministic back-analysis under frequentist inference and the probabilistic back-analysis under Bayesian inference. A framework for the deterministic back-analysis is proposed using the maximum likelihood estimation, which is a typical method of frequentist inference. In the framework for the deterministic back-analysis, the dual annealing (DA) algorithm is applied to search for the globally optimal solution. A framework for the probabilistic back-analysis considering spatial variability is proposed based on the Bayesian theory, random field theory, and truncated Karhunen–Loève expansion (KLE), which overcome the “curse of dimensionality.” It is explained that this framework will also work in the probabilistic back-analysis based on the random variable model. In the two frameworks, metamodels are constructed by gradient boosting decision trees (GBDT). This algorithm perfectly fits the relationship between parameters and displacements of a slope, which replaces the time-consuming finite-element simulations. The adaptability of the two proposed frameworks is illustrated with a real case study of a highway slope. The case study also proves that the fitting accuracy of metamodels constructed by the GBDT algorithm is higher than those constructed by the neural network (NN) and the random forests (RF). Processes of frequentist inference and Bayesian inference show that the difference in their results originates from the different perceptions of the parameter space. However, the two different back-analysis results are not in competition but should be complementary. They both play an important role in slope parameter determination and slope stability analysis." @default.
- W4210270710 created "2022-02-08" @default.
- W4210270710 creator A5004104623 @default.
- W4210270710 creator A5042334259 @default.
- W4210270710 creator A5057999649 @default.
- W4210270710 creator A5082386342 @default.
- W4210270710 creator A5086781167 @default.
- W4210270710 date "2022-04-01" @default.
- W4210270710 modified "2023-09-27" @default.
- W4210270710 title "Displacement-Based Back-Analysis Frameworks for Soil Parameters of a Slope: Using Frequentist Inference and Bayesian Inference" @default.
- W4210270710 cites W1510686773 @default.
- W4210270710 cites W1560225635 @default.
- W4210270710 cites W1579919361 @default.
- W4210270710 cites W1726993684 @default.
- W4210270710 cites W1965597870 @default.
- W4210270710 cites W1979547539 @default.
- W4210270710 cites W1988195734 @default.
- W4210270710 cites W2006982313 @default.
- W4210270710 cites W2018177566 @default.
- W4210270710 cites W2032258450 @default.
- W4210270710 cites W2046403766 @default.
- W4210270710 cites W2053579693 @default.
- W4210270710 cites W2070493638 @default.
- W4210270710 cites W2075260048 @default.
- W4210270710 cites W2075262135 @default.
- W4210270710 cites W2092743072 @default.
- W4210270710 cites W2101687185 @default.
- W4210270710 cites W2102890221 @default.
- W4210270710 cites W2112586494 @default.
- W4210270710 cites W2122347864 @default.
- W4210270710 cites W2125899728 @default.
- W4210270710 cites W2162547718 @default.
- W4210270710 cites W2166992393 @default.
- W4210270710 cites W2167619573 @default.
- W4210270710 cites W2313910120 @default.
- W4210270710 cites W23803691 @default.
- W4210270710 cites W2494343396 @default.
- W4210270710 cites W2498959953 @default.
- W4210270710 cites W2537646176 @default.
- W4210270710 cites W2567881713 @default.
- W4210270710 cites W2744195405 @default.
- W4210270710 cites W2755728131 @default.
- W4210270710 cites W2766276645 @default.
- W4210270710 cites W2786029688 @default.
- W4210270710 cites W2889236393 @default.
- W4210270710 cites W2911792550 @default.
- W4210270710 cites W2948915539 @default.
- W4210270710 cites W2963891400 @default.
- W4210270710 cites W2971319768 @default.
- W4210270710 cites W2972360550 @default.
- W4210270710 cites W2992989837 @default.
- W4210270710 cites W3004942987 @default.
- W4210270710 cites W3011198614 @default.
- W4210270710 cites W3036346296 @default.
- W4210270710 cites W3084772968 @default.
- W4210270710 cites W3089566810 @default.
- W4210270710 cites W3100503506 @default.
- W4210270710 cites W3102014803 @default.
- W4210270710 cites W3120957519 @default.
- W4210270710 cites W3122338683 @default.
- W4210270710 cites W3128923005 @default.
- W4210270710 cites W4210949798 @default.
- W4210270710 cites W4212883601 @default.
- W4210270710 cites W4246099101 @default.
- W4210270710 cites W4289420954 @default.
- W4210270710 cites W624912034 @default.
- W4210270710 doi "https://doi.org/10.1061/(asce)gm.1943-5622.0002318" @default.
- W4210270710 hasPublicationYear "2022" @default.
- W4210270710 type Work @default.
- W4210270710 citedByCount "6" @default.
- W4210270710 countsByYear W42102707102023 @default.
- W4210270710 crossrefType "journal-article" @default.
- W4210270710 hasAuthorship W4210270710A5004104623 @default.
- W4210270710 hasAuthorship W4210270710A5042334259 @default.
- W4210270710 hasAuthorship W4210270710A5057999649 @default.
- W4210270710 hasAuthorship W4210270710A5082386342 @default.
- W4210270710 hasAuthorship W4210270710A5086781167 @default.
- W4210270710 hasConcept C105795698 @default.
- W4210270710 hasConcept C107673813 @default.
- W4210270710 hasConcept C11413529 @default.
- W4210270710 hasConcept C134261354 @default.
- W4210270710 hasConcept C154945302 @default.
- W4210270710 hasConcept C160234255 @default.
- W4210270710 hasConcept C162376815 @default.
- W4210270710 hasConcept C2776214188 @default.
- W4210270710 hasConcept C33923547 @default.
- W4210270710 hasConcept C41008148 @default.
- W4210270710 hasConcept C95167961 @default.
- W4210270710 hasConceptScore W4210270710C105795698 @default.
- W4210270710 hasConceptScore W4210270710C107673813 @default.
- W4210270710 hasConceptScore W4210270710C11413529 @default.
- W4210270710 hasConceptScore W4210270710C134261354 @default.
- W4210270710 hasConceptScore W4210270710C154945302 @default.
- W4210270710 hasConceptScore W4210270710C160234255 @default.
- W4210270710 hasConceptScore W4210270710C162376815 @default.
- W4210270710 hasConceptScore W4210270710C2776214188 @default.
- W4210270710 hasConceptScore W4210270710C33923547 @default.
- W4210270710 hasConceptScore W4210270710C41008148 @default.
- W4210270710 hasConceptScore W4210270710C95167961 @default.
- W4210270710 hasIssue "4" @default.