Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210271978> ?p ?o ?g. }
- W4210271978 abstract "Eye tracking is a technology to measure and determine the eye movements and eye positions of an individual. The eye data can be collected and recorded using an eye tracker. Eye-tracking data offer unprecedented insights into human actions and environments, digitizing how people communicate with computers, and providing novel opportunities to conduct passive biometric-based classification such as emotion prediction. The objective of this article is to review what specific machine learning features can be obtained from eye-tracking data for the classification task.We performed a systematic literature review (SLR) covering the eye-tracking studies in classification published from 2016 to the present. In the search process, we used four independent electronic databases which were the IEEE Xplore, the ACM Digital Library, and the ScienceDirect repositories as well as the Google Scholar. The selection process was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) search strategy. We followed the processes indicated in the PRISMA to choose the appropriate relevant articles.Out of the initial 420 articles that were returned from our initial search query, 37 articles were finally identified and used in the qualitative synthesis, which were deemed to be directly relevant to our research question based on our methodology.The features that could be extracted from eye-tracking data included pupil size, saccade, fixations, velocity, blink, pupil position, electrooculogram (EOG), and gaze point. Fixation was the most commonly used feature among the studies found." @default.
- W4210271978 created "2022-02-08" @default.
- W4210271978 creator A5020103786 @default.
- W4210271978 creator A5057024603 @default.
- W4210271978 creator A5081495376 @default.
- W4210271978 date "2022-02-01" @default.
- W4210271978 modified "2023-10-01" @default.
- W4210271978 title "Eye-Tracking Feature Extraction for Biometric Machine Learning" @default.
- W4210271978 cites W1812927916 @default.
- W4210271978 cites W1986257701 @default.
- W4210271978 cites W2011826874 @default.
- W4210271978 cites W2046287748 @default.
- W4210271978 cites W2107998698 @default.
- W4210271978 cites W2113705163 @default.
- W4210271978 cites W2292627934 @default.
- W4210271978 cites W2335129493 @default.
- W4210271978 cites W2488748484 @default.
- W4210271978 cites W2519473699 @default.
- W4210271978 cites W2520271149 @default.
- W4210271978 cites W2546942002 @default.
- W4210271978 cites W2558193840 @default.
- W4210271978 cites W2743045975 @default.
- W4210271978 cites W2765162555 @default.
- W4210271978 cites W2765386966 @default.
- W4210271978 cites W2772563752 @default.
- W4210271978 cites W2778520330 @default.
- W4210271978 cites W2901090166 @default.
- W4210271978 cites W2915033745 @default.
- W4210271978 cites W2922188941 @default.
- W4210271978 cites W2925024134 @default.
- W4210271978 cites W2930851727 @default.
- W4210271978 cites W2940301341 @default.
- W4210271978 cites W2941983301 @default.
- W4210271978 cites W2945290258 @default.
- W4210271978 cites W2967996127 @default.
- W4210271978 cites W2968919918 @default.
- W4210271978 cites W2972672476 @default.
- W4210271978 cites W2979656641 @default.
- W4210271978 cites W2979713278 @default.
- W4210271978 cites W2980143277 @default.
- W4210271978 cites W2991358333 @default.
- W4210271978 cites W2991779446 @default.
- W4210271978 cites W2998432656 @default.
- W4210271978 cites W3004605627 @default.
- W4210271978 cites W3082314403 @default.
- W4210271978 cites W3182220698 @default.
- W4210271978 cites W3197540886 @default.
- W4210271978 cites W3205480987 @default.
- W4210271978 cites W3210570823 @default.
- W4210271978 doi "https://doi.org/10.3389/fnbot.2021.796895" @default.
- W4210271978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35177973" @default.
- W4210271978 hasPublicationYear "2022" @default.
- W4210271978 type Work @default.
- W4210271978 citedByCount "3" @default.
- W4210271978 countsByYear W42102719782022 @default.
- W4210271978 countsByYear W42102719782023 @default.
- W4210271978 crossrefType "journal-article" @default.
- W4210271978 hasAuthorship W4210271978A5020103786 @default.
- W4210271978 hasAuthorship W4210271978A5057024603 @default.
- W4210271978 hasAuthorship W4210271978A5081495376 @default.
- W4210271978 hasBestOaLocation W42102719781 @default.
- W4210271978 hasConcept C111919701 @default.
- W4210271978 hasConcept C119857082 @default.
- W4210271978 hasConcept C144024400 @default.
- W4210271978 hasConcept C146249460 @default.
- W4210271978 hasConcept C148483581 @default.
- W4210271978 hasConcept C149923435 @default.
- W4210271978 hasConcept C153050134 @default.
- W4210271978 hasConcept C154945302 @default.
- W4210271978 hasConcept C169760540 @default.
- W4210271978 hasConcept C184297639 @default.
- W4210271978 hasConcept C23123220 @default.
- W4210271978 hasConcept C2777394604 @default.
- W4210271978 hasConcept C2779524336 @default.
- W4210271978 hasConcept C2779916870 @default.
- W4210271978 hasConcept C2908647359 @default.
- W4210271978 hasConcept C31972630 @default.
- W4210271978 hasConcept C41008148 @default.
- W4210271978 hasConcept C52622490 @default.
- W4210271978 hasConcept C56461940 @default.
- W4210271978 hasConcept C86803240 @default.
- W4210271978 hasConcept C98045186 @default.
- W4210271978 hasConceptScore W4210271978C111919701 @default.
- W4210271978 hasConceptScore W4210271978C119857082 @default.
- W4210271978 hasConceptScore W4210271978C144024400 @default.
- W4210271978 hasConceptScore W4210271978C146249460 @default.
- W4210271978 hasConceptScore W4210271978C148483581 @default.
- W4210271978 hasConceptScore W4210271978C149923435 @default.
- W4210271978 hasConceptScore W4210271978C153050134 @default.
- W4210271978 hasConceptScore W4210271978C154945302 @default.
- W4210271978 hasConceptScore W4210271978C169760540 @default.
- W4210271978 hasConceptScore W4210271978C184297639 @default.
- W4210271978 hasConceptScore W4210271978C23123220 @default.
- W4210271978 hasConceptScore W4210271978C2777394604 @default.
- W4210271978 hasConceptScore W4210271978C2779524336 @default.
- W4210271978 hasConceptScore W4210271978C2779916870 @default.
- W4210271978 hasConceptScore W4210271978C2908647359 @default.
- W4210271978 hasConceptScore W4210271978C31972630 @default.
- W4210271978 hasConceptScore W4210271978C41008148 @default.
- W4210271978 hasConceptScore W4210271978C52622490 @default.