Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210274006> ?p ?o ?g. }
- W4210274006 endingPage "1372" @default.
- W4210274006 startingPage "1372" @default.
- W4210274006 abstract "The acoustic emission (AE) technique has become a well-established method of monitoring structural health over recent years. The sensing and analysis of elastic AE waves, which have involved piezoelectric wafer active sensors (PWAS) and time domain and frequency domain analysis, has proven to be effective in yielding fatigue crack-related information. However, not much research has been performed regarding (i) the correlation between the fatigue crack length and AE signal signatures and (ii) artificial intelligence (AI) methodologies to automate the AE waveform analysis. In this paper, this crack length correlation is investigated along with the development of a novel AE signal analysis technique via AI. A finite element model (FEM) study was first performed to understand the effects of fatigue crack length on the resulting AE waveforms and a fatigue experiment was performed to capture experimental AE waveforms. Finally, this database of experimental AE waveforms was used with a convolutional neural network to build a system capable of performing automated classification and prediction of the length of a fatigue crack that excited respective AE signals. AE signals captured during a fatigue crack growth experiment were found to match closely with the FEM simulations. This novel AI system proved to be effective at predicting the crack length of an AE signal at an accuracy of 98.4%. This novel AI-enabled AE signal analysis technique will provide a crucial step forward in the development of a comprehensive structural health monitoring (SHM) system." @default.
- W4210274006 created "2022-02-08" @default.
- W4210274006 creator A5019265861 @default.
- W4210274006 creator A5071106759 @default.
- W4210274006 creator A5087562846 @default.
- W4210274006 date "2022-01-27" @default.
- W4210274006 modified "2023-10-16" @default.
- W4210274006 title "An Artificial Intelligence Approach to Fatigue Crack Length Estimation from Acoustic Emission Waves in Thin Metallic Plates" @default.
- W4210274006 cites W1982620751 @default.
- W4210274006 cites W1998665038 @default.
- W4210274006 cites W2023446088 @default.
- W4210274006 cites W2057544289 @default.
- W4210274006 cites W2072328957 @default.
- W4210274006 cites W2075885267 @default.
- W4210274006 cites W2087119090 @default.
- W4210274006 cites W2120590683 @default.
- W4210274006 cites W2131104154 @default.
- W4210274006 cites W2137566234 @default.
- W4210274006 cites W2150391795 @default.
- W4210274006 cites W2320998174 @default.
- W4210274006 cites W2334676985 @default.
- W4210274006 cites W2604719346 @default.
- W4210274006 cites W2618530766 @default.
- W4210274006 cites W2619215265 @default.
- W4210274006 cites W2766714366 @default.
- W4210274006 cites W2771296190 @default.
- W4210274006 cites W2789244341 @default.
- W4210274006 cites W2790661458 @default.
- W4210274006 cites W2890932585 @default.
- W4210274006 cites W2906263355 @default.
- W4210274006 cites W2907234403 @default.
- W4210274006 cites W2909298949 @default.
- W4210274006 cites W2966074732 @default.
- W4210274006 cites W2971692786 @default.
- W4210274006 cites W2972106074 @default.
- W4210274006 cites W2975735865 @default.
- W4210274006 cites W2996872663 @default.
- W4210274006 cites W3000806704 @default.
- W4210274006 cites W3002524784 @default.
- W4210274006 cites W3095926408 @default.
- W4210274006 cites W3119094684 @default.
- W4210274006 cites W3122080613 @default.
- W4210274006 cites W3145174082 @default.
- W4210274006 cites W3175975630 @default.
- W4210274006 cites W3182644282 @default.
- W4210274006 cites W561091138 @default.
- W4210274006 doi "https://doi.org/10.3390/app12031372" @default.
- W4210274006 hasPublicationYear "2022" @default.
- W4210274006 type Work @default.
- W4210274006 citedByCount "9" @default.
- W4210274006 countsByYear W42102740062022 @default.
- W4210274006 countsByYear W42102740062023 @default.
- W4210274006 crossrefType "journal-article" @default.
- W4210274006 hasAuthorship W4210274006A5019265861 @default.
- W4210274006 hasAuthorship W4210274006A5071106759 @default.
- W4210274006 hasAuthorship W4210274006A5087562846 @default.
- W4210274006 hasBestOaLocation W42102740061 @default.
- W4210274006 hasConcept C103824480 @default.
- W4210274006 hasConcept C121332964 @default.
- W4210274006 hasConcept C127413603 @default.
- W4210274006 hasConcept C135628077 @default.
- W4210274006 hasConcept C174598085 @default.
- W4210274006 hasConcept C19118579 @default.
- W4210274006 hasConcept C192562407 @default.
- W4210274006 hasConcept C197424946 @default.
- W4210274006 hasConcept C199360897 @default.
- W4210274006 hasConcept C24890656 @default.
- W4210274006 hasConcept C2776247918 @default.
- W4210274006 hasConcept C2779843651 @default.
- W4210274006 hasConcept C31972630 @default.
- W4210274006 hasConcept C41008148 @default.
- W4210274006 hasConcept C554190296 @default.
- W4210274006 hasConcept C66938386 @default.
- W4210274006 hasConcept C76155785 @default.
- W4210274006 hasConceptScore W4210274006C103824480 @default.
- W4210274006 hasConceptScore W4210274006C121332964 @default.
- W4210274006 hasConceptScore W4210274006C127413603 @default.
- W4210274006 hasConceptScore W4210274006C135628077 @default.
- W4210274006 hasConceptScore W4210274006C174598085 @default.
- W4210274006 hasConceptScore W4210274006C19118579 @default.
- W4210274006 hasConceptScore W4210274006C192562407 @default.
- W4210274006 hasConceptScore W4210274006C197424946 @default.
- W4210274006 hasConceptScore W4210274006C199360897 @default.
- W4210274006 hasConceptScore W4210274006C24890656 @default.
- W4210274006 hasConceptScore W4210274006C2776247918 @default.
- W4210274006 hasConceptScore W4210274006C2779843651 @default.
- W4210274006 hasConceptScore W4210274006C31972630 @default.
- W4210274006 hasConceptScore W4210274006C41008148 @default.
- W4210274006 hasConceptScore W4210274006C554190296 @default.
- W4210274006 hasConceptScore W4210274006C66938386 @default.
- W4210274006 hasConceptScore W4210274006C76155785 @default.
- W4210274006 hasIssue "3" @default.
- W4210274006 hasLocation W42102740061 @default.
- W4210274006 hasLocation W42102740062 @default.
- W4210274006 hasOpenAccess W4210274006 @default.
- W4210274006 hasPrimaryLocation W42102740061 @default.
- W4210274006 hasRelatedWork W1976234691 @default.
- W4210274006 hasRelatedWork W2024367938 @default.