Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210276042> ?p ?o ?g. }
- W4210276042 endingPage "121" @default.
- W4210276042 startingPage "103" @default.
- W4210276042 abstract "AbstractThe last decade witnessed the exponential increase in the large and complex biological datasets. These studies range from human to different species under different conditions like disease versus control expression, evaluating clinical trials, microbiome, and metagenomics to generate a number of molecular entities like genes, proteins, transcription factors, and metabolites. The former ones still capture a gist of the rate at which computational repositories are getting filled up. These ever-increasing datasets provide an opportunity by raising a community question in the scientific field: about the effective utilization of the biological datasets for the predictive modeling to gain insights about the deep-seated meaningful information and hence to assist the health informatics community in tackling the grave diseases like autoimmune disorders, cancers, and childhood malignancies by predicting the better treatments or prior diagnosis. Therefore, since the last decade, the prime focus has been the understanding of the complex biological systems using the statistical and data analytical methods, which can specifically be made to handle large, heterogeneous, complex datasets in their training and yield some biological insight. Machine learning (ML) aims to address this question and provides predictive models which allow the scientific community to understand the disease from a new perspective and generate novel hypotheses. Present chapter is a primer on the use of machine learning to connect the different dots hidden in the high-dimensional datasets and infer biological networks. It puts particular interest on the gene regulatory networks (GRNs) and the current computational resources available for the same. It provides a comprehensive picture of the GRNs along with the current advancements and limitations in the area." @default.
- W4210276042 created "2022-02-08" @default.
- W4210276042 creator A5052442908 @default.
- W4210276042 creator A5067192427 @default.
- W4210276042 creator A5080442426 @default.
- W4210276042 date "2022-01-01" @default.
- W4210276042 modified "2023-10-03" @default.
- W4210276042 title "Connecting the Dots: Using Machine Learning to Forge Gene Regulatory Networks from Large Biological Datasets. At the Intersection of GRNs: Where System Biology Meets Machine Learning" @default.
- W4210276042 cites W1748901113 @default.
- W4210276042 cites W1780633620 @default.
- W4210276042 cites W1842847600 @default.
- W4210276042 cites W1964963969 @default.
- W4210276042 cites W1966558370 @default.
- W4210276042 cites W1984883254 @default.
- W4210276042 cites W1997639391 @default.
- W4210276042 cites W2000406884 @default.
- W4210276042 cites W2001246746 @default.
- W4210276042 cites W2006439377 @default.
- W4210276042 cites W2015059346 @default.
- W4210276042 cites W2017408113 @default.
- W4210276042 cites W2033284638 @default.
- W4210276042 cites W2038138598 @default.
- W4210276042 cites W2045299822 @default.
- W4210276042 cites W2053835153 @default.
- W4210276042 cites W2055214702 @default.
- W4210276042 cites W2058720919 @default.
- W4210276042 cites W2074006029 @default.
- W4210276042 cites W2095622082 @default.
- W4210276042 cites W2100990361 @default.
- W4210276042 cites W2105712639 @default.
- W4210276042 cites W2106898243 @default.
- W4210276042 cites W2109384743 @default.
- W4210276042 cites W2117994680 @default.
- W4210276042 cites W2125258701 @default.
- W4210276042 cites W2125910575 @default.
- W4210276042 cites W2129389248 @default.
- W4210276042 cites W2137046528 @default.
- W4210276042 cites W2137531873 @default.
- W4210276042 cites W2146640191 @default.
- W4210276042 cites W2153011302 @default.
- W4210276042 cites W2153355914 @default.
- W4210276042 cites W2159675211 @default.
- W4210276042 cites W2160095931 @default.
- W4210276042 cites W2162494256 @default.
- W4210276042 cites W2167566248 @default.
- W4210276042 cites W2169053773 @default.
- W4210276042 cites W2170682402 @default.
- W4210276042 cites W2171685287 @default.
- W4210276042 cites W2175370850 @default.
- W4210276042 cites W2176717166 @default.
- W4210276042 cites W2197505008 @default.
- W4210276042 cites W2232370058 @default.
- W4210276042 cites W2270798645 @default.
- W4210276042 cites W2391223672 @default.
- W4210276042 cites W2395289335 @default.
- W4210276042 cites W2403934794 @default.
- W4210276042 cites W2736887218 @default.
- W4210276042 cites W2747877289 @default.
- W4210276042 cites W2752065278 @default.
- W4210276042 cites W2757021802 @default.
- W4210276042 cites W2765720106 @default.
- W4210276042 cites W2782454362 @default.
- W4210276042 cites W2899510892 @default.
- W4210276042 cites W2905137393 @default.
- W4210276042 cites W2908717547 @default.
- W4210276042 cites W2947483919 @default.
- W4210276042 cites W2951296859 @default.
- W4210276042 cites W2951424836 @default.
- W4210276042 cites W2951799803 @default.
- W4210276042 cites W2953957504 @default.
- W4210276042 cites W2981957398 @default.
- W4210276042 cites W2982380908 @default.
- W4210276042 cites W2990766158 @default.
- W4210276042 cites W3002343929 @default.
- W4210276042 cites W3004863010 @default.
- W4210276042 cites W3013821085 @default.
- W4210276042 cites W3024161231 @default.
- W4210276042 cites W3024641121 @default.
- W4210276042 cites W3024890774 @default.
- W4210276042 cites W3102311360 @default.
- W4210276042 cites W3123942469 @default.
- W4210276042 cites W4233951753 @default.
- W4210276042 doi "https://doi.org/10.1007/978-981-16-5993-5_6" @default.
- W4210276042 hasPublicationYear "2022" @default.
- W4210276042 type Work @default.
- W4210276042 citedByCount "1" @default.
- W4210276042 countsByYear W42102760422022 @default.
- W4210276042 crossrefType "book-chapter" @default.
- W4210276042 hasAuthorship W4210276042A5052442908 @default.
- W4210276042 hasAuthorship W4210276042A5067192427 @default.
- W4210276042 hasAuthorship W4210276042A5080442426 @default.
- W4210276042 hasConcept C104317684 @default.
- W4210276042 hasConcept C108583219 @default.
- W4210276042 hasConcept C119599485 @default.
- W4210276042 hasConcept C119857082 @default.
- W4210276042 hasConcept C127413603 @default.
- W4210276042 hasConcept C150194340 @default.
- W4210276042 hasConcept C154945302 @default.