Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210276420> ?p ?o ?g. }
- W4210276420 endingPage "924" @default.
- W4210276420 startingPage "924" @default.
- W4210276420 abstract "The trend related to reach the high operating temperature condition (HOT, temperature, T > 190 K) achieved by thermoelectric (TE) coolers has been observed in infrared (IR) technology recently. That is directly related to the attempts to reduce the IR detector size, weight, and power dissipation (SWaP) conditions. The room temperature avalanche photodiodes technology is well developed in short IR range (SWIR) while devices operating in mid-wavelength (MWIR) and long-wavelength (LWIR) require cooling to suppress dark current due to the low energy bandgap. The paper presents research on the potential application of the HgCdTe (100) oriented and HgCdTe (111)B heterostructures grown by metal-organic chemical vapor deposition (MOCVD) on GaAs substrates for the design of avalanche photodiodes (APDs) operating in the IR range up to 8 µm and under 2-stage TE cooling (T = 230 K). While HgCdTe band structure with molar composition xCd < 0.5 provides a very favorable hole-to-electron ionization coefficient ratio under avalanche conditions, resulting in increased gain without generating excess noise, the low level of background doping concentration and a low number of defects in the active layer is also required. HgCdTe (100) oriented layers exhibit better crystalline quality than HgCdTe (111)B grown on GaAs substrates, low dislocation density, and reduction of residual defects which contribute to a background doping within the range ~1014 cm–3. The fitting to the experimentally measured dark currents (at T = 230 K) of the N+-ν-p-P+ photodiodes commonly used as an APDs structure allowed to determine the material parameters. Experimentally extracted the mid-bandgap trap concentrations at the level of 2.5 × 1014 cm−3 and 1 × 1015 cm−3 for HgCdTe (100) and HgCdTe (111)B photodiode are reported respectively. HgCdTe (100) is better to provide high resistance, and consequently sufficient strength and uniform electric field distribution, as well as to avoid the tunneling current contribution at higher bias, which is a key issue in the proper operation of avalanche photodiodes. It was presented that HgCdTe (100) based N+-ν-p-P+ gain, M > 100 could be reached for reverse voltage > 5 V and excess noise factor F(M) assumes: 2.25 (active layer, xCd = 0.22, k = 0.04, M = 10) for λcut-off = 8 μm and T = 230 K. In addition the 4-TE cooled, 8 μm APDs performance was compared to the state-of-the-art for SWIR and MWIR APDs based mainly on III-V and HgCdTe materials (T = 77–300 K)." @default.
- W4210276420 created "2022-02-08" @default.
- W4210276420 creator A5009686581 @default.
- W4210276420 creator A5020569826 @default.
- W4210276420 creator A5052977724 @default.
- W4210276420 creator A5090736275 @default.
- W4210276420 date "2022-01-25" @default.
- W4210276420 modified "2023-10-11" @default.
- W4210276420 title "Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm" @default.
- W4210276420 cites W1568232179 @default.
- W4210276420 cites W1632541159 @default.
- W4210276420 cites W1873980536 @default.
- W4210276420 cites W1967818934 @default.
- W4210276420 cites W1973424706 @default.
- W4210276420 cites W1974488869 @default.
- W4210276420 cites W1978632452 @default.
- W4210276420 cites W1982123964 @default.
- W4210276420 cites W1987180292 @default.
- W4210276420 cites W1991433994 @default.
- W4210276420 cites W1999565621 @default.
- W4210276420 cites W2001944306 @default.
- W4210276420 cites W2010405643 @default.
- W4210276420 cites W2015686096 @default.
- W4210276420 cites W2022368646 @default.
- W4210276420 cites W2022814910 @default.
- W4210276420 cites W2025079253 @default.
- W4210276420 cites W2031699085 @default.
- W4210276420 cites W2039971426 @default.
- W4210276420 cites W2054224610 @default.
- W4210276420 cites W2062998276 @default.
- W4210276420 cites W2076211498 @default.
- W4210276420 cites W2084465348 @default.
- W4210276420 cites W2088710910 @default.
- W4210276420 cites W2091655888 @default.
- W4210276420 cites W2112876374 @default.
- W4210276420 cites W2140964941 @default.
- W4210276420 cites W2292580866 @default.
- W4210276420 cites W2331811639 @default.
- W4210276420 cites W2347166575 @default.
- W4210276420 cites W2601511960 @default.
- W4210276420 cites W2805058049 @default.
- W4210276420 cites W2891204392 @default.
- W4210276420 cites W2960302037 @default.
- W4210276420 cites W2998582864 @default.
- W4210276420 cites W3015361589 @default.
- W4210276420 cites W3025187144 @default.
- W4210276420 cites W3092016963 @default.
- W4210276420 cites W3108552066 @default.
- W4210276420 cites W3132617319 @default.
- W4210276420 cites W3134586749 @default.
- W4210276420 cites W3135396822 @default.
- W4210276420 cites W3141477746 @default.
- W4210276420 cites W3160536778 @default.
- W4210276420 cites W4242588320 @default.
- W4210276420 doi "https://doi.org/10.3390/s22030924" @default.
- W4210276420 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35161667" @default.
- W4210276420 hasPublicationYear "2022" @default.
- W4210276420 type Work @default.
- W4210276420 citedByCount "7" @default.
- W4210276420 countsByYear W42102764202022 @default.
- W4210276420 countsByYear W42102764202023 @default.
- W4210276420 crossrefType "journal-article" @default.
- W4210276420 hasAuthorship W4210276420A5009686581 @default.
- W4210276420 hasAuthorship W4210276420A5020569826 @default.
- W4210276420 hasAuthorship W4210276420A5052977724 @default.
- W4210276420 hasAuthorship W4210276420A5090736275 @default.
- W4210276420 hasBestOaLocation W42102764201 @default.
- W4210276420 hasConcept C109679912 @default.
- W4210276420 hasConcept C110738630 @default.
- W4210276420 hasConcept C120665830 @default.
- W4210276420 hasConcept C121332964 @default.
- W4210276420 hasConcept C158355884 @default.
- W4210276420 hasConcept C171250308 @default.
- W4210276420 hasConcept C175665537 @default.
- W4210276420 hasConcept C180651308 @default.
- W4210276420 hasConcept C181966813 @default.
- W4210276420 hasConcept C192562407 @default.
- W4210276420 hasConcept C193265955 @default.
- W4210276420 hasConcept C23125352 @default.
- W4210276420 hasConcept C2779227376 @default.
- W4210276420 hasConcept C49040817 @default.
- W4210276420 hasConcept C57410435 @default.
- W4210276420 hasConcept C57863236 @default.
- W4210276420 hasConcept C751236 @default.
- W4210276420 hasConcept C79794668 @default.
- W4210276420 hasConcept C94915269 @default.
- W4210276420 hasConceptScore W4210276420C109679912 @default.
- W4210276420 hasConceptScore W4210276420C110738630 @default.
- W4210276420 hasConceptScore W4210276420C120665830 @default.
- W4210276420 hasConceptScore W4210276420C121332964 @default.
- W4210276420 hasConceptScore W4210276420C158355884 @default.
- W4210276420 hasConceptScore W4210276420C171250308 @default.
- W4210276420 hasConceptScore W4210276420C175665537 @default.
- W4210276420 hasConceptScore W4210276420C180651308 @default.
- W4210276420 hasConceptScore W4210276420C181966813 @default.
- W4210276420 hasConceptScore W4210276420C192562407 @default.
- W4210276420 hasConceptScore W4210276420C193265955 @default.
- W4210276420 hasConceptScore W4210276420C23125352 @default.