Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210276887> ?p ?o ?g. }
- W4210276887 endingPage "469" @default.
- W4210276887 startingPage "469" @default.
- W4210276887 abstract "Since predicting rapidly fluctuating water levels is very important in water resource engineering, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were used to evaluate water-level-prediction accuracy at Hangang Bridge Station in Han River, South Korea, where seasonal fluctuations were large and rapidly changing water levels were observed. The hydrological data input to each model were collected from the Water Resources Management Information System (WAMIS) at the Hangang Bridge Station, and the meteorological data were provided by the Seoul Observatory of the Meteorological Administration. For high-accuracy high-water-level prediction, the correlation between water level and collected hydrological and meteorological data was analyzed and input into the models to determine the priority of the data to be trained. Multivariate input data were created by combining daily flow rate (DFR), daily vapor pressure (DVP), daily dew-point temperature (DDPT), and 1-hour-max precipitation (1HP) data, which are highly correlated with the water level. It was possible to predict improved high water levels through the training of multivariate input data of LSTM and GRU. In the prediction of water-level data with rapid temporal fluctuations in the Hangang Bridge Station, the accuracy of GRU’s predicted water-level data was much better in most multivariate training than that of LSTM. When multivariate training data with a large correlation with the water level were used by the GRU, the prediction results with higher accuracy (R2=0.7480–0.8318; NSE=0.7524–0.7965; MRPE=0.0807–0.0895) were obtained than those of water-level prediction results by univariate training." @default.
- W4210276887 created "2022-02-08" @default.
- W4210276887 creator A5016076978 @default.
- W4210276887 creator A5017020650 @default.
- W4210276887 creator A5049356004 @default.
- W4210276887 creator A5082396822 @default.
- W4210276887 date "2022-02-04" @default.
- W4210276887 modified "2023-09-27" @default.
- W4210276887 title "Development of Deep Learning Models to Improve the Accuracy of Water Levels Time Series Prediction through Multivariate Hydrological Data" @default.
- W4210276887 cites W1505117892 @default.
- W4210276887 cites W1986421176 @default.
- W4210276887 cites W1998808712 @default.
- W4210276887 cites W2005161317 @default.
- W4210276887 cites W2042985051 @default.
- W4210276887 cites W2046785557 @default.
- W4210276887 cites W2050112273 @default.
- W4210276887 cites W2052326365 @default.
- W4210276887 cites W2063756720 @default.
- W4210276887 cites W2064675550 @default.
- W4210276887 cites W2064748704 @default.
- W4210276887 cites W2072697915 @default.
- W4210276887 cites W2084680771 @default.
- W4210276887 cites W2093540472 @default.
- W4210276887 cites W2095909648 @default.
- W4210276887 cites W2101038146 @default.
- W4210276887 cites W2132104490 @default.
- W4210276887 cites W2172147742 @default.
- W4210276887 cites W2321245920 @default.
- W4210276887 cites W2327731887 @default.
- W4210276887 cites W2343315206 @default.
- W4210276887 cites W2616053486 @default.
- W4210276887 cites W2810785332 @default.
- W4210276887 cites W2889226858 @default.
- W4210276887 cites W2918178295 @default.
- W4210276887 cites W2942300526 @default.
- W4210276887 cites W2997624500 @default.
- W4210276887 cites W3006126867 @default.
- W4210276887 cites W3026717820 @default.
- W4210276887 cites W3091821738 @default.
- W4210276887 cites W3111665047 @default.
- W4210276887 cites W3154468772 @default.
- W4210276887 cites W3159304892 @default.
- W4210276887 cites W3198819506 @default.
- W4210276887 cites W3207323724 @default.
- W4210276887 doi "https://doi.org/10.3390/w14030469" @default.
- W4210276887 hasPublicationYear "2022" @default.
- W4210276887 type Work @default.
- W4210276887 citedByCount "13" @default.
- W4210276887 countsByYear W42102768872022 @default.
- W4210276887 countsByYear W42102768872023 @default.
- W4210276887 crossrefType "journal-article" @default.
- W4210276887 hasAuthorship W4210276887A5016076978 @default.
- W4210276887 hasAuthorship W4210276887A5017020650 @default.
- W4210276887 hasAuthorship W4210276887A5049356004 @default.
- W4210276887 hasAuthorship W4210276887A5082396822 @default.
- W4210276887 hasBestOaLocation W42102768871 @default.
- W4210276887 hasConcept C119857082 @default.
- W4210276887 hasConcept C126645576 @default.
- W4210276887 hasConcept C127413603 @default.
- W4210276887 hasConcept C1284942 @default.
- W4210276887 hasConcept C151406439 @default.
- W4210276887 hasConcept C153294291 @default.
- W4210276887 hasConcept C153823671 @default.
- W4210276887 hasConcept C161584116 @default.
- W4210276887 hasConcept C187320778 @default.
- W4210276887 hasConcept C18903297 @default.
- W4210276887 hasConcept C205649164 @default.
- W4210276887 hasConcept C38180746 @default.
- W4210276887 hasConcept C39432304 @default.
- W4210276887 hasConcept C41008148 @default.
- W4210276887 hasConcept C53739315 @default.
- W4210276887 hasConcept C58640448 @default.
- W4210276887 hasConcept C76886044 @default.
- W4210276887 hasConcept C82210777 @default.
- W4210276887 hasConcept C86803240 @default.
- W4210276887 hasConcept C99484651 @default.
- W4210276887 hasConceptScore W4210276887C119857082 @default.
- W4210276887 hasConceptScore W4210276887C126645576 @default.
- W4210276887 hasConceptScore W4210276887C127413603 @default.
- W4210276887 hasConceptScore W4210276887C1284942 @default.
- W4210276887 hasConceptScore W4210276887C151406439 @default.
- W4210276887 hasConceptScore W4210276887C153294291 @default.
- W4210276887 hasConceptScore W4210276887C153823671 @default.
- W4210276887 hasConceptScore W4210276887C161584116 @default.
- W4210276887 hasConceptScore W4210276887C187320778 @default.
- W4210276887 hasConceptScore W4210276887C18903297 @default.
- W4210276887 hasConceptScore W4210276887C205649164 @default.
- W4210276887 hasConceptScore W4210276887C38180746 @default.
- W4210276887 hasConceptScore W4210276887C39432304 @default.
- W4210276887 hasConceptScore W4210276887C41008148 @default.
- W4210276887 hasConceptScore W4210276887C53739315 @default.
- W4210276887 hasConceptScore W4210276887C58640448 @default.
- W4210276887 hasConceptScore W4210276887C76886044 @default.
- W4210276887 hasConceptScore W4210276887C82210777 @default.
- W4210276887 hasConceptScore W4210276887C86803240 @default.
- W4210276887 hasConceptScore W4210276887C99484651 @default.
- W4210276887 hasIssue "3" @default.
- W4210276887 hasLocation W42102768871 @default.