Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210282015> ?p ?o ?g. }
- W4210282015 endingPage "56" @default.
- W4210282015 startingPage "56" @default.
- W4210282015 abstract "The application of physics-informed neural networks (PINNs) to computational fluid dynamics simulations has recently attracted tremendous attention. In the simulations of PINNs, the collocation points are required to conform to the fluid–solid interface on which no-slip boundary condition is enforced. Here, a novel PINN that incorporates the direct-forcing immersed boundary (IB) method is developed. In the proposed IB-PINN, the boundary conforming requirement in arranging the collocation points is eliminated. Instead, velocity penalties at some marker points are added to the loss function to enforce no-slip condition at the fluid–solid interface. In addition, force penalties at some collocation points are also added to the loss function to ensure compact distribution of the volume force. The effectiveness of IB-PINN in solving incompressible Navier–Stokes equations is demonstrated through the simulation of laminar flow past a circular cylinder that is placed in a channel. The solution obtained using the IB-PINN is compared with two reference solutions obtained using a conventional mesh-based IB method and an ordinary body-fitted grid method. The comparison indicates that the three solutions are in excellent agreement with each other. The influences of some parameters, such as weights for different loss components, numbers of collocation and marker points, hyperparameters in the neural network, etc., on the performance of IB-PINN are also studied. In addition, a transfer learning experiment is conducted on solving Navier–Stokes equations with different Reynolds numbers." @default.
- W4210282015 created "2022-02-08" @default.
- W4210282015 creator A5031472553 @default.
- W4210282015 creator A5046973659 @default.
- W4210282015 creator A5089709454 @default.
- W4210282015 date "2022-01-25" @default.
- W4210282015 modified "2023-09-30" @default.
- W4210282015 title "A Direct-Forcing Immersed Boundary Method for Incompressible Flows Based on Physics-Informed Neural Network" @default.
- W4210282015 cites W1981857248 @default.
- W4210282015 cites W2025577016 @default.
- W4210282015 cites W2036319654 @default.
- W4210282015 cites W2042122648 @default.
- W4210282015 cites W2047425707 @default.
- W4210282015 cites W2049208432 @default.
- W4210282015 cites W2066222663 @default.
- W4210282015 cites W2084131634 @default.
- W4210282015 cites W2165019514 @default.
- W4210282015 cites W2490045648 @default.
- W4210282015 cites W2534240011 @default.
- W4210282015 cites W2751013712 @default.
- W4210282015 cites W2788980797 @default.
- W4210282015 cites W2888317899 @default.
- W4210282015 cites W2899283552 @default.
- W4210282015 cites W2900119356 @default.
- W4210282015 cites W2948230027 @default.
- W4210282015 cites W2962757926 @default.
- W4210282015 cites W2964027982 @default.
- W4210282015 cites W2998366519 @default.
- W4210282015 cites W3003922491 @default.
- W4210282015 cites W3010839048 @default.
- W4210282015 cites W3041682155 @default.
- W4210282015 cites W3091815695 @default.
- W4210282015 cites W3091986675 @default.
- W4210282015 cites W3102140816 @default.
- W4210282015 cites W3105450412 @default.
- W4210282015 cites W3113558818 @default.
- W4210282015 cites W3137253052 @default.
- W4210282015 cites W3162035515 @default.
- W4210282015 cites W3163195245 @default.
- W4210282015 cites W3163993681 @default.
- W4210282015 cites W3184635942 @default.
- W4210282015 cites W3197473870 @default.
- W4210282015 cites W3197687099 @default.
- W4210282015 cites W4200036085 @default.
- W4210282015 cites W4220717841 @default.
- W4210282015 doi "https://doi.org/10.3390/fluids7020056" @default.
- W4210282015 hasPublicationYear "2022" @default.
- W4210282015 type Work @default.
- W4210282015 citedByCount "6" @default.
- W4210282015 countsByYear W42102820152022 @default.
- W4210282015 countsByYear W42102820152023 @default.
- W4210282015 crossrefType "journal-article" @default.
- W4210282015 hasAuthorship W4210282015A5031472553 @default.
- W4210282015 hasAuthorship W4210282015A5046973659 @default.
- W4210282015 hasAuthorship W4210282015A5089709454 @default.
- W4210282015 hasBestOaLocation W42102820151 @default.
- W4210282015 hasConcept C119857082 @default.
- W4210282015 hasConcept C121332964 @default.
- W4210282015 hasConcept C121704545 @default.
- W4210282015 hasConcept C134306372 @default.
- W4210282015 hasConcept C182310444 @default.
- W4210282015 hasConcept C182748727 @default.
- W4210282015 hasConcept C195268267 @default.
- W4210282015 hasConcept C196558001 @default.
- W4210282015 hasConcept C2126413 @default.
- W4210282015 hasConcept C2781278361 @default.
- W4210282015 hasConcept C33923547 @default.
- W4210282015 hasConcept C41008148 @default.
- W4210282015 hasConcept C51544822 @default.
- W4210282015 hasConcept C57879066 @default.
- W4210282015 hasConcept C62354387 @default.
- W4210282015 hasConcept C76563973 @default.
- W4210282015 hasConcept C78045399 @default.
- W4210282015 hasConcept C80023036 @default.
- W4210282015 hasConcept C84655787 @default.
- W4210282015 hasConcept C97355855 @default.
- W4210282015 hasConceptScore W4210282015C119857082 @default.
- W4210282015 hasConceptScore W4210282015C121332964 @default.
- W4210282015 hasConceptScore W4210282015C121704545 @default.
- W4210282015 hasConceptScore W4210282015C134306372 @default.
- W4210282015 hasConceptScore W4210282015C182310444 @default.
- W4210282015 hasConceptScore W4210282015C182748727 @default.
- W4210282015 hasConceptScore W4210282015C195268267 @default.
- W4210282015 hasConceptScore W4210282015C196558001 @default.
- W4210282015 hasConceptScore W4210282015C2126413 @default.
- W4210282015 hasConceptScore W4210282015C2781278361 @default.
- W4210282015 hasConceptScore W4210282015C33923547 @default.
- W4210282015 hasConceptScore W4210282015C41008148 @default.
- W4210282015 hasConceptScore W4210282015C51544822 @default.
- W4210282015 hasConceptScore W4210282015C57879066 @default.
- W4210282015 hasConceptScore W4210282015C62354387 @default.
- W4210282015 hasConceptScore W4210282015C76563973 @default.
- W4210282015 hasConceptScore W4210282015C78045399 @default.
- W4210282015 hasConceptScore W4210282015C80023036 @default.
- W4210282015 hasConceptScore W4210282015C84655787 @default.
- W4210282015 hasConceptScore W4210282015C97355855 @default.
- W4210282015 hasFunder F4320321001 @default.
- W4210282015 hasFunder F4320321133 @default.