Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210290469> ?p ?o ?g. }
- W4210290469 endingPage "599" @default.
- W4210290469 startingPage "599" @default.
- W4210290469 abstract "Due to the country’s rapid economic growth, the problem of air pollution in China is becoming increasingly serious. In order to achieve a win-win situation for the environment and urban development, the government has issued many policies to strengthen environmental protection. PM2.5 is the primary particulate matter in air pollution, so an accurate estimation of PM2.5 distribution is of great significance. Although previous studies have attempted to retrieve PM2.5 using geostatistical or aerosol remote sensing retrieval methods, the current rough resolution and accuracy remain as limitations of such methods. This paper proposes a fine-grained spatiotemporal PM2.5 retrieval method that comprehensively considers various datasets, such as Landsat 8 satellite images, ground monitoring station data, and socio-economic data, to explore the applicability of different machine learning algorithms in PM2.5 retrieval. Six typical algorithms were used to train the multi-dimensional elements in a series of experiments. The characteristics of retrieval accuracy in different scenarios were clarified mainly according to the validation index, R2. The random forest algorithm was shown to have the best numerical and PM2.5-based air-quality-category accuracy, with a cross-validated R2 of 0.86 and a category retrieval accuracy of 0.83, while both maintained excellent retrieval accuracy and achieved a high spatiotemporal resolution. Based on this retrieval model, we evaluated the PM2.5 distribution characteristics and hourly variation in the sample area, as well as the functions of different input variables in the model. The PM2.5 retrieval method proposed in this paper provides a new model for fine-grained PM2.5 concentration estimation to determine the distribution laws of air pollutants and thereby specify more effective measures to realize the high-quality development of the city." @default.
- W4210290469 created "2022-02-08" @default.
- W4210290469 creator A5025242907 @default.
- W4210290469 creator A5036274737 @default.
- W4210290469 creator A5037028903 @default.
- W4210290469 creator A5066128154 @default.
- W4210290469 creator A5072303473 @default.
- W4210290469 creator A5075994205 @default.
- W4210290469 date "2022-01-26" @default.
- W4210290469 modified "2023-10-18" @default.
- W4210290469 title "Retrieval of Fine-Grained PM2.5 Spatiotemporal Resolution Based on Multiple Machine Learning Models" @default.
- W4210290469 cites W1973749534 @default.
- W4210290469 cites W2057036781 @default.
- W4210290469 cites W2069977802 @default.
- W4210290469 cites W2080651100 @default.
- W4210290469 cites W2083944525 @default.
- W4210290469 cites W2084668217 @default.
- W4210290469 cites W2110673467 @default.
- W4210290469 cites W2130189616 @default.
- W4210290469 cites W2141970008 @default.
- W4210290469 cites W2203507062 @default.
- W4210290469 cites W2208235194 @default.
- W4210290469 cites W2306844409 @default.
- W4210290469 cites W2312602772 @default.
- W4210290469 cites W2316167246 @default.
- W4210290469 cites W2608460809 @default.
- W4210290469 cites W2740369742 @default.
- W4210290469 cites W2761974490 @default.
- W4210290469 cites W2791696953 @default.
- W4210290469 cites W2794899212 @default.
- W4210290469 cites W2795470013 @default.
- W4210290469 cites W2797259048 @default.
- W4210290469 cites W2801411141 @default.
- W4210290469 cites W2811009165 @default.
- W4210290469 cites W2886607263 @default.
- W4210290469 cites W2903922503 @default.
- W4210290469 cites W2917616628 @default.
- W4210290469 cites W2921474046 @default.
- W4210290469 cites W2928066036 @default.
- W4210290469 cites W2945306488 @default.
- W4210290469 cites W2965521597 @default.
- W4210290469 cites W2969836731 @default.
- W4210290469 cites W2972641706 @default.
- W4210290469 cites W2975879014 @default.
- W4210290469 cites W2985057327 @default.
- W4210290469 cites W3000260079 @default.
- W4210290469 cites W3001539913 @default.
- W4210290469 cites W3006101764 @default.
- W4210290469 cites W3011200639 @default.
- W4210290469 cites W3012231256 @default.
- W4210290469 cites W3043856293 @default.
- W4210290469 cites W3048785992 @default.
- W4210290469 cites W3049482449 @default.
- W4210290469 cites W3080464634 @default.
- W4210290469 cites W3109044937 @default.
- W4210290469 cites W3127449191 @default.
- W4210290469 cites W3192855158 @default.
- W4210290469 cites W3197557654 @default.
- W4210290469 cites W4200046456 @default.
- W4210290469 doi "https://doi.org/10.3390/rs14030599" @default.
- W4210290469 hasPublicationYear "2022" @default.
- W4210290469 type Work @default.
- W4210290469 citedByCount "13" @default.
- W4210290469 countsByYear W42102904692022 @default.
- W4210290469 countsByYear W42102904692023 @default.
- W4210290469 crossrefType "journal-article" @default.
- W4210290469 hasAuthorship W4210290469A5025242907 @default.
- W4210290469 hasAuthorship W4210290469A5036274737 @default.
- W4210290469 hasAuthorship W4210290469A5037028903 @default.
- W4210290469 hasAuthorship W4210290469A5066128154 @default.
- W4210290469 hasAuthorship W4210290469A5072303473 @default.
- W4210290469 hasAuthorship W4210290469A5075994205 @default.
- W4210290469 hasBestOaLocation W42102904691 @default.
- W4210290469 hasConcept C119857082 @default.
- W4210290469 hasConcept C124101348 @default.
- W4210290469 hasConcept C169258074 @default.
- W4210290469 hasConcept C205649164 @default.
- W4210290469 hasConcept C39432304 @default.
- W4210290469 hasConcept C41008148 @default.
- W4210290469 hasConcept C62649853 @default.
- W4210290469 hasConceptScore W4210290469C119857082 @default.
- W4210290469 hasConceptScore W4210290469C124101348 @default.
- W4210290469 hasConceptScore W4210290469C169258074 @default.
- W4210290469 hasConceptScore W4210290469C205649164 @default.
- W4210290469 hasConceptScore W4210290469C39432304 @default.
- W4210290469 hasConceptScore W4210290469C41008148 @default.
- W4210290469 hasConceptScore W4210290469C62649853 @default.
- W4210290469 hasFunder F4320321001 @default.
- W4210290469 hasFunder F4320336008 @default.
- W4210290469 hasIssue "3" @default.
- W4210290469 hasLocation W42102904691 @default.
- W4210290469 hasLocation W42102904692 @default.
- W4210290469 hasLocation W42102904693 @default.
- W4210290469 hasOpenAccess W4210290469 @default.
- W4210290469 hasPrimaryLocation W42102904691 @default.
- W4210290469 hasRelatedWork W1964024921 @default.
- W4210290469 hasRelatedWork W2022420161 @default.
- W4210290469 hasRelatedWork W2037995797 @default.