Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210298300> ?p ?o ?g. }
- W4210298300 endingPage "123428" @default.
- W4210298300 startingPage "123428" @default.
- W4210298300 abstract "In the present work, artificial neural networks (ANN) has been used for developing a comprehensive model for predicting flash point (FP) of petroleum fuels containing the following oxygenated chemical classes: alcohols, ethers, aldehydes, ketones and esters. 474 pure compounds and 314 blends comprising of various compounds were used for model development. The fuels were dissembled into eleven constituent functional groups namely, paraffinic CH3, CH2 and CH groups, olefinic –CH = CH2 groups, naphthenic –CH-CH2, aromatic C-CH groups, alcoholic OH groups, ether O groups, aldehydic CHO groups, ketonic CO groups and ester COO groups. These eleven groups were treated as model inputs along with molecular weight (MW) and branching index (BI) which is a structural parameter. These 13 inputs were calculated for each of the 788 fuels to generate a dataset, which was used to train the model. Two ANN models were developed, one using Matlab and other using Keras, an interface for ANN library. GridSearchCV and RandomSearch were used to optimize the network in the Keras model. The developed models showed satisfactory results when applied against the entries in the test set which comprised 20% of the dataset that was not used for model training. The regression coefficient for the comparison between the experimental and predicted data was found to be 0.981 (Matlab model) and 0.979 (Keras model). The developed models have low mean absolute errors of 3.12 K (Matlab model) and 3.55 K (Keras model) and can be used to predict (and screen) FP’s of various complex oxygenated compounds and their mixtures." @default.
- W4210298300 created "2022-02-08" @default.
- W4210298300 creator A5004620038 @default.
- W4210298300 creator A5005332754 @default.
- W4210298300 creator A5009625723 @default.
- W4210298300 creator A5010560484 @default.
- W4210298300 creator A5055929635 @default.
- W4210298300 creator A5067051021 @default.
- W4210298300 date "2022-06-01" @default.
- W4210298300 modified "2023-09-30" @default.
- W4210298300 title "A comprehensive neural network model for predicting flash point of oxygenated fuels using a functional group approach" @default.
- W4210298300 cites W1175556960 @default.
- W4210298300 cites W1971779685 @default.
- W4210298300 cites W1985404670 @default.
- W4210298300 cites W1985794062 @default.
- W4210298300 cites W2048561317 @default.
- W4210298300 cites W2050917861 @default.
- W4210298300 cites W2056265255 @default.
- W4210298300 cites W2085839370 @default.
- W4210298300 cites W2115235376 @default.
- W4210298300 cites W2117270385 @default.
- W4210298300 cites W2121764149 @default.
- W4210298300 cites W2141468108 @default.
- W4210298300 cites W2317696202 @default.
- W4210298300 cites W2323133696 @default.
- W4210298300 cites W2329784630 @default.
- W4210298300 cites W2410876539 @default.
- W4210298300 cites W2484254181 @default.
- W4210298300 cites W2484457548 @default.
- W4210298300 cites W2519619519 @default.
- W4210298300 cites W2592274758 @default.
- W4210298300 cites W2793541628 @default.
- W4210298300 cites W2802982083 @default.
- W4210298300 cites W2897339231 @default.
- W4210298300 cites W2984235879 @default.
- W4210298300 cites W2987469461 @default.
- W4210298300 cites W2989737798 @default.
- W4210298300 cites W3022080479 @default.
- W4210298300 cites W3127214530 @default.
- W4210298300 cites W3160970966 @default.
- W4210298300 cites W3176118425 @default.
- W4210298300 cites W3197408887 @default.
- W4210298300 doi "https://doi.org/10.1016/j.fuel.2022.123428" @default.
- W4210298300 hasPublicationYear "2022" @default.
- W4210298300 type Work @default.
- W4210298300 citedByCount "12" @default.
- W4210298300 countsByYear W42102983002022 @default.
- W4210298300 countsByYear W42102983002023 @default.
- W4210298300 crossrefType "journal-article" @default.
- W4210298300 hasAuthorship W4210298300A5004620038 @default.
- W4210298300 hasAuthorship W4210298300A5005332754 @default.
- W4210298300 hasAuthorship W4210298300A5009625723 @default.
- W4210298300 hasAuthorship W4210298300A5010560484 @default.
- W4210298300 hasAuthorship W4210298300A5055929635 @default.
- W4210298300 hasAuthorship W4210298300A5067051021 @default.
- W4210298300 hasConcept C111919701 @default.
- W4210298300 hasConcept C119857082 @default.
- W4210298300 hasConcept C128990827 @default.
- W4210298300 hasConcept C142204130 @default.
- W4210298300 hasConcept C154945302 @default.
- W4210298300 hasConcept C162015975 @default.
- W4210298300 hasConcept C169903167 @default.
- W4210298300 hasConcept C178790620 @default.
- W4210298300 hasConcept C185592680 @default.
- W4210298300 hasConcept C186060115 @default.
- W4210298300 hasConcept C206175624 @default.
- W4210298300 hasConcept C2780365114 @default.
- W4210298300 hasConcept C2780407432 @default.
- W4210298300 hasConcept C2986159531 @default.
- W4210298300 hasConcept C41008148 @default.
- W4210298300 hasConcept C44280652 @default.
- W4210298300 hasConcept C50644808 @default.
- W4210298300 hasConcept C51632099 @default.
- W4210298300 hasConcept C86803240 @default.
- W4210298300 hasConceptScore W4210298300C111919701 @default.
- W4210298300 hasConceptScore W4210298300C119857082 @default.
- W4210298300 hasConceptScore W4210298300C128990827 @default.
- W4210298300 hasConceptScore W4210298300C142204130 @default.
- W4210298300 hasConceptScore W4210298300C154945302 @default.
- W4210298300 hasConceptScore W4210298300C162015975 @default.
- W4210298300 hasConceptScore W4210298300C169903167 @default.
- W4210298300 hasConceptScore W4210298300C178790620 @default.
- W4210298300 hasConceptScore W4210298300C185592680 @default.
- W4210298300 hasConceptScore W4210298300C186060115 @default.
- W4210298300 hasConceptScore W4210298300C206175624 @default.
- W4210298300 hasConceptScore W4210298300C2780365114 @default.
- W4210298300 hasConceptScore W4210298300C2780407432 @default.
- W4210298300 hasConceptScore W4210298300C2986159531 @default.
- W4210298300 hasConceptScore W4210298300C41008148 @default.
- W4210298300 hasConceptScore W4210298300C44280652 @default.
- W4210298300 hasConceptScore W4210298300C50644808 @default.
- W4210298300 hasConceptScore W4210298300C51632099 @default.
- W4210298300 hasConceptScore W4210298300C86803240 @default.
- W4210298300 hasLocation W42102983001 @default.
- W4210298300 hasOpenAccess W4210298300 @default.
- W4210298300 hasPrimaryLocation W42102983001 @default.
- W4210298300 hasRelatedWork W1983707632 @default.
- W4210298300 hasRelatedWork W1993403706 @default.