Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210312870> ?p ?o ?g. }
- W4210312870 endingPage "19" @default.
- W4210312870 startingPage "1" @default.
- W4210312870 abstract "Nowaday, emails are used in almost every field, from business to education. Emails have two subcategories, i.e., ham and spam. Email spam, also called junk emails or unwanted emails, is a type of email that can be used to harm any user by wasting his/her time, computing resources, and stealing valuable information. The ratio of spam emails is increasing rapidly day by day. Spam detection and filtration are significant and enormous problems for email and IoT service providers nowadays. Among all the techniques developed for detecting and preventing spam, filtering email is one of the most essential and prominent approaches. Several machine learning and deep learning techniques have been used for this purpose, i.e., Naïve Bayes, decision trees, neural networks, and random forest. This paper surveys the machine learning techniques used for spam filtering techniques used in email and IoT platforms by classifying them into suitable categories. A comprehensive comparison of these techniques is also made based on accuracy, precision, recall, etc. In the end, comprehensive insights and future research directions are also discussed." @default.
- W4210312870 created "2022-02-08" @default.
- W4210312870 creator A5000061018 @default.
- W4210312870 creator A5007077685 @default.
- W4210312870 creator A5009367259 @default.
- W4210312870 creator A5021941614 @default.
- W4210312870 creator A5029317503 @default.
- W4210312870 creator A5081643062 @default.
- W4210312870 date "2022-02-03" @default.
- W4210312870 modified "2023-10-01" @default.
- W4210312870 title "Machine Learning Techniques for Spam Detection in Email and IoT Platforms: Analysis and Research Challenges" @default.
- W4210312870 cites W1541525934 @default.
- W4210312870 cites W1552665700 @default.
- W4210312870 cites W1636244751 @default.
- W4210312870 cites W192227941 @default.
- W4210312870 cites W1968817125 @default.
- W4210312870 cites W1999768179 @default.
- W4210312870 cites W2005052966 @default.
- W4210312870 cites W2009562920 @default.
- W4210312870 cites W2015585187 @default.
- W4210312870 cites W2043690777 @default.
- W4210312870 cites W2044709159 @default.
- W4210312870 cites W2092022777 @default.
- W4210312870 cites W2101514187 @default.
- W4210312870 cites W2126970839 @default.
- W4210312870 cites W2127188028 @default.
- W4210312870 cites W2132429870 @default.
- W4210312870 cites W2158076717 @default.
- W4210312870 cites W2216979581 @default.
- W4210312870 cites W2345652415 @default.
- W4210312870 cites W2473278781 @default.
- W4210312870 cites W2521164685 @default.
- W4210312870 cites W2548118777 @default.
- W4210312870 cites W2559689130 @default.
- W4210312870 cites W2593685047 @default.
- W4210312870 cites W2607232342 @default.
- W4210312870 cites W2685702996 @default.
- W4210312870 cites W269675895 @default.
- W4210312870 cites W2724222212 @default.
- W4210312870 cites W2735364174 @default.
- W4210312870 cites W2749511780 @default.
- W4210312870 cites W2765520544 @default.
- W4210312870 cites W2779627157 @default.
- W4210312870 cites W2783033852 @default.
- W4210312870 cites W2783786976 @default.
- W4210312870 cites W2786605327 @default.
- W4210312870 cites W2790738536 @default.
- W4210312870 cites W2804231227 @default.
- W4210312870 cites W2804836751 @default.
- W4210312870 cites W2808846291 @default.
- W4210312870 cites W2888182060 @default.
- W4210312870 cites W2891503321 @default.
- W4210312870 cites W2900681641 @default.
- W4210312870 cites W2903583684 @default.
- W4210312870 cites W2903976715 @default.
- W4210312870 cites W2911273633 @default.
- W4210312870 cites W2914128779 @default.
- W4210312870 cites W2949836779 @default.
- W4210312870 cites W2953236426 @default.
- W4210312870 cites W2972028451 @default.
- W4210312870 cites W2991507433 @default.
- W4210312870 cites W3009983180 @default.
- W4210312870 cites W3135095093 @default.
- W4210312870 cites W4236998864 @default.
- W4210312870 cites W4249358576 @default.
- W4210312870 cites W71972093 @default.
- W4210312870 doi "https://doi.org/10.1155/2022/1862888" @default.
- W4210312870 hasPublicationYear "2022" @default.
- W4210312870 type Work @default.
- W4210312870 citedByCount "28" @default.
- W4210312870 countsByYear W42103128702022 @default.
- W4210312870 countsByYear W42103128702023 @default.
- W4210312870 crossrefType "journal-article" @default.
- W4210312870 hasAuthorship W4210312870A5000061018 @default.
- W4210312870 hasAuthorship W4210312870A5007077685 @default.
- W4210312870 hasAuthorship W4210312870A5009367259 @default.
- W4210312870 hasAuthorship W4210312870A5021941614 @default.
- W4210312870 hasAuthorship W4210312870A5029317503 @default.
- W4210312870 hasAuthorship W4210312870A5081643062 @default.
- W4210312870 hasBestOaLocation W42103128701 @default.
- W4210312870 hasConcept C110875604 @default.
- W4210312870 hasConcept C119857082 @default.
- W4210312870 hasConcept C12267149 @default.
- W4210312870 hasConcept C127735637 @default.
- W4210312870 hasConcept C136764020 @default.
- W4210312870 hasConcept C154945302 @default.
- W4210312870 hasConcept C157310412 @default.
- W4210312870 hasConcept C158955206 @default.
- W4210312870 hasConcept C169258074 @default.
- W4210312870 hasConcept C202444582 @default.
- W4210312870 hasConcept C33923547 @default.
- W4210312870 hasConcept C41008148 @default.
- W4210312870 hasConcept C52001869 @default.
- W4210312870 hasConcept C84525736 @default.
- W4210312870 hasConcept C9652623 @default.
- W4210312870 hasConceptScore W4210312870C110875604 @default.
- W4210312870 hasConceptScore W4210312870C119857082 @default.
- W4210312870 hasConceptScore W4210312870C12267149 @default.