Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210319314> ?p ?o ?g. }
- W4210319314 endingPage "335" @default.
- W4210319314 startingPage "319" @default.
- W4210319314 abstract "In this article, a (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations, which describes the non-linear, and long gravity waves in a dispersive system, is investigated by applying the method of Lie group of invariance. Applying the Lie group technique, the infinitesimals, vector fields, commutator table, and adjoint table are constructed for the BKK system. Furthermore, a one-dimensional optimal system of subalgebras is determined with the help of the adjoint transformation matrix; thereafter, the BKK system of equations is reduced into many systems of ordinary differential equations (ODEs) with respect to the similarity variables obtained through the symmetry reduction. These systems of ODEs are solved under some parametric constraints to obtain the exact closed form solutions. The obtained results are interpreted physically via graphical representation. Thus, dark–bright solitary waves, multi-peak mixed waves, breather type waves, periodic waves, multi-peakon solitons, and multi-solitons profiles of the obtained solutions are presented to make this research physically significant. A comparison is also presented between the solutions obtained in this article and the solutions reported by Kassem and Rashed in Kassem and Rashed (2019). The solutions obtained in this article are more general, and completely different in view of solutions obtained by Kassem and Rashed. The resulting solutions are found to be useful to understand the dynamics of BKK model and represent the authenticity as well as the effectiveness of the Lie group method. Therefore, the obtained solutions, and their dynamical wave structures are quite significant for understanding the propagation of the long gravity waves in a dispersive system. To obtain the infinitesimal generators and wave profiles of obtained solutions, symbolic computation is performed in the software package MAPLE and MATHEMATICA." @default.
- W4210319314 created "2022-02-08" @default.
- W4210319314 creator A5016556813 @default.
- W4210319314 creator A5039406610 @default.
- W4210319314 creator A5059263629 @default.
- W4210319314 date "2022-06-01" @default.
- W4210319314 modified "2023-10-17" @default.
- W4210319314 title "Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations" @default.
- W4210319314 cites W2020578342 @default.
- W4210319314 cites W2046601112 @default.
- W4210319314 cites W2052210756 @default.
- W4210319314 cites W2090885565 @default.
- W4210319314 cites W2093315683 @default.
- W4210319314 cites W2114754775 @default.
- W4210319314 cites W2120020177 @default.
- W4210319314 cites W2134248747 @default.
- W4210319314 cites W2164733588 @default.
- W4210319314 cites W2227171536 @default.
- W4210319314 cites W2337684290 @default.
- W4210319314 cites W2473030010 @default.
- W4210319314 cites W2775360498 @default.
- W4210319314 cites W2790087250 @default.
- W4210319314 cites W2890250940 @default.
- W4210319314 cites W2907688004 @default.
- W4210319314 cites W2992726662 @default.
- W4210319314 cites W3003976528 @default.
- W4210319314 cites W3005887145 @default.
- W4210319314 cites W3011200140 @default.
- W4210319314 cites W3014961771 @default.
- W4210319314 cites W3033679072 @default.
- W4210319314 cites W3087306623 @default.
- W4210319314 cites W3087704234 @default.
- W4210319314 cites W3103138737 @default.
- W4210319314 cites W3106997457 @default.
- W4210319314 cites W3107497183 @default.
- W4210319314 cites W3115376208 @default.
- W4210319314 cites W3138456862 @default.
- W4210319314 cites W3143518504 @default.
- W4210319314 cites W3159113645 @default.
- W4210319314 cites W3178579312 @default.
- W4210319314 cites W3192047816 @default.
- W4210319314 doi "https://doi.org/10.1016/j.matcom.2022.01.024" @default.
- W4210319314 hasPublicationYear "2022" @default.
- W4210319314 type Work @default.
- W4210319314 citedByCount "22" @default.
- W4210319314 countsByYear W42103193142022 @default.
- W4210319314 countsByYear W42103193142023 @default.
- W4210319314 crossrefType "journal-article" @default.
- W4210319314 hasAuthorship W4210319314A5016556813 @default.
- W4210319314 hasAuthorship W4210319314A5039406610 @default.
- W4210319314 hasAuthorship W4210319314A5059263629 @default.
- W4210319314 hasConcept C104317684 @default.
- W4210319314 hasConcept C121332964 @default.
- W4210319314 hasConcept C134306372 @default.
- W4210319314 hasConcept C185592680 @default.
- W4210319314 hasConcept C187915474 @default.
- W4210319314 hasConcept C202444582 @default.
- W4210319314 hasConcept C204241405 @default.
- W4210319314 hasConcept C2524010 @default.
- W4210319314 hasConcept C2779886137 @default.
- W4210319314 hasConcept C28826006 @default.
- W4210319314 hasConcept C33923547 @default.
- W4210319314 hasConcept C34862557 @default.
- W4210319314 hasConcept C51544822 @default.
- W4210319314 hasConcept C55493867 @default.
- W4210319314 hasConcept C62520636 @default.
- W4210319314 hasConcept C78045399 @default.
- W4210319314 hasConcept C79379906 @default.
- W4210319314 hasConceptScore W4210319314C104317684 @default.
- W4210319314 hasConceptScore W4210319314C121332964 @default.
- W4210319314 hasConceptScore W4210319314C134306372 @default.
- W4210319314 hasConceptScore W4210319314C185592680 @default.
- W4210319314 hasConceptScore W4210319314C187915474 @default.
- W4210319314 hasConceptScore W4210319314C202444582 @default.
- W4210319314 hasConceptScore W4210319314C204241405 @default.
- W4210319314 hasConceptScore W4210319314C2524010 @default.
- W4210319314 hasConceptScore W4210319314C2779886137 @default.
- W4210319314 hasConceptScore W4210319314C28826006 @default.
- W4210319314 hasConceptScore W4210319314C33923547 @default.
- W4210319314 hasConceptScore W4210319314C34862557 @default.
- W4210319314 hasConceptScore W4210319314C51544822 @default.
- W4210319314 hasConceptScore W4210319314C55493867 @default.
- W4210319314 hasConceptScore W4210319314C62520636 @default.
- W4210319314 hasConceptScore W4210319314C78045399 @default.
- W4210319314 hasConceptScore W4210319314C79379906 @default.
- W4210319314 hasLocation W42103193141 @default.
- W4210319314 hasOpenAccess W4210319314 @default.
- W4210319314 hasPrimaryLocation W42103193141 @default.
- W4210319314 hasRelatedWork W2615580716 @default.
- W4210319314 hasRelatedWork W2735199473 @default.
- W4210319314 hasRelatedWork W2963355322 @default.
- W4210319314 hasRelatedWork W3098143845 @default.
- W4210319314 hasRelatedWork W4206695959 @default.
- W4210319314 hasRelatedWork W4244284965 @default.
- W4210319314 hasRelatedWork W4288093367 @default.
- W4210319314 hasRelatedWork W4302604620 @default.
- W4210319314 hasRelatedWork W4313271046 @default.
- W4210319314 hasRelatedWork W4323927134 @default.