Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210325776> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4210325776 endingPage "13472" @default.
- W4210325776 startingPage "13462" @default.
- W4210325776 abstract "Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97 <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$%$</tex-math></inline-formula> ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$ pm 0.09%$</tex-math></inline-formula> ) accuracy on Gaussian white noise, 99.87 <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$%$</tex-math></inline-formula> ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$ pm 0.12%$</tex-math></inline-formula> ) accuracy on Laplacian noise, and 99.98 <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$%$</tex-math></inline-formula> ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$ pm 0.02%$</tex-math></inline-formula> ) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method." @default.
- W4210325776 created "2022-02-08" @default.
- W4210325776 creator A5003759585 @default.
- W4210325776 creator A5035319482 @default.
- W4210325776 creator A5068613301 @default.
- W4210325776 creator A5086559201 @default.
- W4210325776 date "2022-12-01" @default.
- W4210325776 modified "2023-10-09" @default.
- W4210325776 title "Dual-Path Mixed-Domain Residual Threshold Networks for Bearing Fault Diagnosis" @default.
- W4210325776 cites W2038517753 @default.
- W4210325776 cites W2114606054 @default.
- W4210325776 cites W2126607811 @default.
- W4210325776 cites W2194775991 @default.
- W4210325776 cites W2584994008 @default.
- W4210325776 cites W2592939477 @default.
- W4210325776 cites W2746111230 @default.
- W4210325776 cites W2752782242 @default.
- W4210325776 cites W2762355244 @default.
- W4210325776 cites W2765516066 @default.
- W4210325776 cites W2768753204 @default.
- W4210325776 cites W2805662770 @default.
- W4210325776 cites W2898375427 @default.
- W4210325776 cites W2906578288 @default.
- W4210325776 cites W2943389092 @default.
- W4210325776 cites W2964054038 @default.
- W4210325776 cites W2965875348 @default.
- W4210325776 cites W2968227736 @default.
- W4210325776 cites W2977117446 @default.
- W4210325776 cites W2986466532 @default.
- W4210325776 cites W3000384844 @default.
- W4210325776 cites W3004760341 @default.
- W4210325776 cites W3005695061 @default.
- W4210325776 cites W3007619185 @default.
- W4210325776 cites W3015173390 @default.
- W4210325776 cites W3083789190 @default.
- W4210325776 cites W3089406903 @default.
- W4210325776 cites W3111635293 @default.
- W4210325776 doi "https://doi.org/10.1109/tie.2022.3144572" @default.
- W4210325776 hasPublicationYear "2022" @default.
- W4210325776 type Work @default.
- W4210325776 citedByCount "30" @default.
- W4210325776 countsByYear W42103257762022 @default.
- W4210325776 countsByYear W42103257762023 @default.
- W4210325776 crossrefType "journal-article" @default.
- W4210325776 hasAuthorship W4210325776A5003759585 @default.
- W4210325776 hasAuthorship W4210325776A5035319482 @default.
- W4210325776 hasAuthorship W4210325776A5068613301 @default.
- W4210325776 hasAuthorship W4210325776A5086559201 @default.
- W4210325776 hasConcept C108583219 @default.
- W4210325776 hasConcept C11413529 @default.
- W4210325776 hasConcept C154945302 @default.
- W4210325776 hasConcept C155512373 @default.
- W4210325776 hasConcept C33923547 @default.
- W4210325776 hasConcept C41008148 @default.
- W4210325776 hasConcept C45357846 @default.
- W4210325776 hasConcept C50644808 @default.
- W4210325776 hasConcept C81363708 @default.
- W4210325776 hasConcept C94375191 @default.
- W4210325776 hasConceptScore W4210325776C108583219 @default.
- W4210325776 hasConceptScore W4210325776C11413529 @default.
- W4210325776 hasConceptScore W4210325776C154945302 @default.
- W4210325776 hasConceptScore W4210325776C155512373 @default.
- W4210325776 hasConceptScore W4210325776C33923547 @default.
- W4210325776 hasConceptScore W4210325776C41008148 @default.
- W4210325776 hasConceptScore W4210325776C45357846 @default.
- W4210325776 hasConceptScore W4210325776C50644808 @default.
- W4210325776 hasConceptScore W4210325776C81363708 @default.
- W4210325776 hasConceptScore W4210325776C94375191 @default.
- W4210325776 hasFunder F4320338464 @default.
- W4210325776 hasIssue "12" @default.
- W4210325776 hasLocation W42103257761 @default.
- W4210325776 hasOpenAccess W4210325776 @default.
- W4210325776 hasPrimaryLocation W42103257761 @default.
- W4210325776 hasRelatedWork W2731899572 @default.
- W4210325776 hasRelatedWork W2782645198 @default.
- W4210325776 hasRelatedWork W2999805992 @default.
- W4210325776 hasRelatedWork W3011074480 @default.
- W4210325776 hasRelatedWork W3116150086 @default.
- W4210325776 hasRelatedWork W3133861977 @default.
- W4210325776 hasRelatedWork W4200173597 @default.
- W4210325776 hasRelatedWork W4291897433 @default.
- W4210325776 hasRelatedWork W4312417841 @default.
- W4210325776 hasRelatedWork W4321369474 @default.
- W4210325776 hasVolume "69" @default.
- W4210325776 isParatext "false" @default.
- W4210325776 isRetracted "false" @default.
- W4210325776 workType "article" @default.