Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210327430> ?p ?o ?g. }
- W4210327430 endingPage "1186" @default.
- W4210327430 startingPage "1186" @default.
- W4210327430 abstract "Hyperparameter tuning is a critical function necessary for the effective deployment of most machine learning (ML) algorithms. It is used to find the optimal hyperparameter settings of an ML algorithm in order to improve its overall output performance. To this effect, several optimization strategies have been studied for fine-tuning the hyperparameters of many ML algorithms, especially in the absence of model-specific information. However, because most ML training procedures need a significant amount of computational time and memory, it is frequently necessary to build an optimization technique that converges within a small number of fitness evaluations. As a result, a simple deterministic selection genetic algorithm (SDSGA) is proposed in this article. The SDSGA was realized by ensuring that both chromosomes and their accompanying fitness values in the original genetic algorithm are selected in an elitist-like way. We assessed the SDSGA over a variety of mathematical test functions. It was then used to optimize the hyperparameters of two well-known machine learning models, namely, the convolutional neural network (CNN) and the random forest (RF) algorithm, with application on the MNIST and UCI classification datasets. The SDSGA’s efficiency was compared to that of the Bayesian Optimization (BO) and three other popular metaheuristic optimization algorithms (MOAs), namely, the genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO) algorithms. The results obtained reveal that the SDSGA performed better than the other MOAs in solving 11 of the 17 known benchmark functions considered in our study. While optimizing the hyperparameters of the two ML models, it performed marginally better in terms of accuracy than the other methods while taking less time to compute." @default.
- W4210327430 created "2022-02-08" @default.
- W4210327430 creator A5007184931 @default.
- W4210327430 creator A5011959052 @default.
- W4210327430 creator A5037355923 @default.
- W4210327430 creator A5039527755 @default.
- W4210327430 creator A5051269920 @default.
- W4210327430 creator A5072912076 @default.
- W4210327430 date "2022-01-24" @default.
- W4210327430 modified "2023-10-16" @default.
- W4210327430 title "Simple Deterministic Selection-Based Genetic Algorithm for Hyperparameter Tuning of Machine Learning Models" @default.
- W4210327430 cites W13188192 @default.
- W4210327430 cites W1972978393 @default.
- W4210327430 cites W1982147649 @default.
- W4210327430 cites W1986490585 @default.
- W4210327430 cites W2002731955 @default.
- W4210327430 cites W2004670864 @default.
- W4210327430 cites W2015776612 @default.
- W4210327430 cites W2016023958 @default.
- W4210327430 cites W2025138869 @default.
- W4210327430 cites W2046938271 @default.
- W4210327430 cites W2102539288 @default.
- W4210327430 cites W2110390205 @default.
- W4210327430 cites W2112796928 @default.
- W4210327430 cites W2145113795 @default.
- W4210327430 cites W2152195021 @default.
- W4210327430 cites W2168081761 @default.
- W4210327430 cites W2189149359 @default.
- W4210327430 cites W2518010140 @default.
- W4210327430 cites W2585240214 @default.
- W4210327430 cites W2608595939 @default.
- W4210327430 cites W2734383650 @default.
- W4210327430 cites W2735913953 @default.
- W4210327430 cites W2757741958 @default.
- W4210327430 cites W2772089072 @default.
- W4210327430 cites W2912548817 @default.
- W4210327430 cites W2945790622 @default.
- W4210327430 cites W2964024268 @default.
- W4210327430 cites W2967663220 @default.
- W4210327430 cites W2976182793 @default.
- W4210327430 cites W2979513031 @default.
- W4210327430 cites W2993035901 @default.
- W4210327430 cites W3012330071 @default.
- W4210327430 cites W3103370507 @default.
- W4210327430 cites W3108731616 @default.
- W4210327430 cites W3127180188 @default.
- W4210327430 cites W3139250374 @default.
- W4210327430 cites W3200110661 @default.
- W4210327430 doi "https://doi.org/10.3390/app12031186" @default.
- W4210327430 hasPublicationYear "2022" @default.
- W4210327430 type Work @default.
- W4210327430 citedByCount "14" @default.
- W4210327430 countsByYear W42103274302022 @default.
- W4210327430 countsByYear W42103274302023 @default.
- W4210327430 crossrefType "journal-article" @default.
- W4210327430 hasAuthorship W4210327430A5007184931 @default.
- W4210327430 hasAuthorship W4210327430A5011959052 @default.
- W4210327430 hasAuthorship W4210327430A5037355923 @default.
- W4210327430 hasAuthorship W4210327430A5039527755 @default.
- W4210327430 hasAuthorship W4210327430A5051269920 @default.
- W4210327430 hasAuthorship W4210327430A5072912076 @default.
- W4210327430 hasBestOaLocation W42103274301 @default.
- W4210327430 hasConcept C10485038 @default.
- W4210327430 hasConcept C109718341 @default.
- W4210327430 hasConcept C11413529 @default.
- W4210327430 hasConcept C119857082 @default.
- W4210327430 hasConcept C12267149 @default.
- W4210327430 hasConcept C126255220 @default.
- W4210327430 hasConcept C13280743 @default.
- W4210327430 hasConcept C154945302 @default.
- W4210327430 hasConcept C185798385 @default.
- W4210327430 hasConcept C190502265 @default.
- W4210327430 hasConcept C205649164 @default.
- W4210327430 hasConcept C2778049539 @default.
- W4210327430 hasConcept C33923547 @default.
- W4210327430 hasConcept C41008148 @default.
- W4210327430 hasConcept C50644808 @default.
- W4210327430 hasConcept C81917197 @default.
- W4210327430 hasConcept C85617194 @default.
- W4210327430 hasConcept C8642999 @default.
- W4210327430 hasConcept C8880873 @default.
- W4210327430 hasConceptScore W4210327430C10485038 @default.
- W4210327430 hasConceptScore W4210327430C109718341 @default.
- W4210327430 hasConceptScore W4210327430C11413529 @default.
- W4210327430 hasConceptScore W4210327430C119857082 @default.
- W4210327430 hasConceptScore W4210327430C12267149 @default.
- W4210327430 hasConceptScore W4210327430C126255220 @default.
- W4210327430 hasConceptScore W4210327430C13280743 @default.
- W4210327430 hasConceptScore W4210327430C154945302 @default.
- W4210327430 hasConceptScore W4210327430C185798385 @default.
- W4210327430 hasConceptScore W4210327430C190502265 @default.
- W4210327430 hasConceptScore W4210327430C205649164 @default.
- W4210327430 hasConceptScore W4210327430C2778049539 @default.
- W4210327430 hasConceptScore W4210327430C33923547 @default.
- W4210327430 hasConceptScore W4210327430C41008148 @default.
- W4210327430 hasConceptScore W4210327430C50644808 @default.
- W4210327430 hasConceptScore W4210327430C81917197 @default.
- W4210327430 hasConceptScore W4210327430C85617194 @default.