Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210339679> ?p ?o ?g. }
- W4210339679 endingPage "107970" @default.
- W4210339679 startingPage "107970" @default.
- W4210339679 abstract "Deep Neural Networks (DNN) form a powerful deep learning model that can process unprecedented volumes of data. The hyperparameters of DNN have a significant influence on its prediction performance. Evolutionary algorithms (EAs) form a heuristic-based approach that provides an opportunity to optimize deep learning models to obtain good performance. Therefore, we propose an evolutionary deep learning model called IPSO-DNN based on DNN for prediction and an improved Particle Swarm Optimization (IPSO) algorithm to optimize the kernel hyperparameters of DNN in a self-adaptive evolutionary way. In the IPSO algorithm, a micro population size setting is introduced to improve the search efficiency of the algorithm, and the generalized opposition-based learning strategy is used to guide the population evolution. In addition, the IPSO algorithm employs a self-adaptive update strategy to prevent premature convergence and then improves the exploitation and exploration parameter optimization performance of DNN. In this paper, we show that the IPSO algorithm provides an efficient approach for tuning the hyperparameters of DNN with saving valuable computational resources. We explore the proposed IPSO-DNN model to predict the effect of social distancing on the spread of COVID-19 based on the social distancing metrics. The preliminary experimental results reveal that the proposed IPSO-DNN model has the least computation cost and yields better prediction accuracy results when compared to the other models. The experiments of the IPSO-DNN model also illustrate that aggressive and extensive social distancing interventions are crucial to help flatten the COVID-19 epidemic curve in the United States." @default.
- W4210339679 created "2022-02-08" @default.
- W4210339679 creator A5003799782 @default.
- W4210339679 creator A5024023175 @default.
- W4210339679 creator A5048864421 @default.
- W4210339679 creator A5086799378 @default.
- W4210339679 date "2022-04-01" @default.
- W4210339679 modified "2023-10-01" @default.
- W4210339679 title "Optimizing deep neural networks to predict the effect of social distancing on COVID-19 spread" @default.
- W4210339679 cites W189470725 @default.
- W4210339679 cites W1976323314 @default.
- W4210339679 cites W1999707545 @default.
- W4210339679 cites W2083028490 @default.
- W4210339679 cites W2131613989 @default.
- W4210339679 cites W2152195021 @default.
- W4210339679 cites W2155370091 @default.
- W4210339679 cites W2156773695 @default.
- W4210339679 cites W2162745921 @default.
- W4210339679 cites W2250904038 @default.
- W4210339679 cites W2262722845 @default.
- W4210339679 cites W2285660444 @default.
- W4210339679 cites W2528288802 @default.
- W4210339679 cites W2726140679 @default.
- W4210339679 cites W2775420709 @default.
- W4210339679 cites W2885000664 @default.
- W4210339679 cites W2885208219 @default.
- W4210339679 cites W2963658737 @default.
- W4210339679 cites W2965465741 @default.
- W4210339679 cites W2983575492 @default.
- W4210339679 cites W3004542065 @default.
- W4210339679 cites W3006514018 @default.
- W4210339679 cites W3013252066 @default.
- W4210339679 cites W3014191625 @default.
- W4210339679 cites W3017403618 @default.
- W4210339679 cites W3021721382 @default.
- W4210339679 cites W3029383985 @default.
- W4210339679 cites W3041773420 @default.
- W4210339679 cites W3083526163 @default.
- W4210339679 cites W3095524696 @default.
- W4210339679 cites W3106843546 @default.
- W4210339679 cites W3112955596 @default.
- W4210339679 cites W3114056360 @default.
- W4210339679 cites W3134792445 @default.
- W4210339679 cites W3136708623 @default.
- W4210339679 cites W404655571 @default.
- W4210339679 cites W4241727697 @default.
- W4210339679 doi "https://doi.org/10.1016/j.cie.2022.107970" @default.
- W4210339679 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36568699" @default.
- W4210339679 hasPublicationYear "2022" @default.
- W4210339679 type Work @default.
- W4210339679 citedByCount "12" @default.
- W4210339679 countsByYear W42103396792022 @default.
- W4210339679 countsByYear W42103396792023 @default.
- W4210339679 crossrefType "journal-article" @default.
- W4210339679 hasAuthorship W4210339679A5003799782 @default.
- W4210339679 hasAuthorship W4210339679A5024023175 @default.
- W4210339679 hasAuthorship W4210339679A5048864421 @default.
- W4210339679 hasAuthorship W4210339679A5086799378 @default.
- W4210339679 hasBestOaLocation W42103396791 @default.
- W4210339679 hasConcept C105902424 @default.
- W4210339679 hasConcept C108583219 @default.
- W4210339679 hasConcept C119857082 @default.
- W4210339679 hasConcept C126255220 @default.
- W4210339679 hasConcept C144024400 @default.
- W4210339679 hasConcept C149923435 @default.
- W4210339679 hasConcept C154945302 @default.
- W4210339679 hasConcept C159149176 @default.
- W4210339679 hasConcept C181335050 @default.
- W4210339679 hasConcept C2908647359 @default.
- W4210339679 hasConcept C33923547 @default.
- W4210339679 hasConcept C41008148 @default.
- W4210339679 hasConcept C50644808 @default.
- W4210339679 hasConcept C58758708 @default.
- W4210339679 hasConcept C85617194 @default.
- W4210339679 hasConcept C8642999 @default.
- W4210339679 hasConceptScore W4210339679C105902424 @default.
- W4210339679 hasConceptScore W4210339679C108583219 @default.
- W4210339679 hasConceptScore W4210339679C119857082 @default.
- W4210339679 hasConceptScore W4210339679C126255220 @default.
- W4210339679 hasConceptScore W4210339679C144024400 @default.
- W4210339679 hasConceptScore W4210339679C149923435 @default.
- W4210339679 hasConceptScore W4210339679C154945302 @default.
- W4210339679 hasConceptScore W4210339679C159149176 @default.
- W4210339679 hasConceptScore W4210339679C181335050 @default.
- W4210339679 hasConceptScore W4210339679C2908647359 @default.
- W4210339679 hasConceptScore W4210339679C33923547 @default.
- W4210339679 hasConceptScore W4210339679C41008148 @default.
- W4210339679 hasConceptScore W4210339679C50644808 @default.
- W4210339679 hasConceptScore W4210339679C58758708 @default.
- W4210339679 hasConceptScore W4210339679C85617194 @default.
- W4210339679 hasConceptScore W4210339679C8642999 @default.
- W4210339679 hasLocation W42103396791 @default.
- W4210339679 hasLocation W42103396792 @default.
- W4210339679 hasLocation W42103396793 @default.
- W4210339679 hasOpenAccess W4210339679 @default.
- W4210339679 hasPrimaryLocation W42103396791 @default.
- W4210339679 hasRelatedWork W169699897 @default.
- W4210339679 hasRelatedWork W2032127345 @default.