Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210342917> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4210342917 abstract "Abstract It is challenging to locate small-airway obstructions induced by chronic obstructive pulmonary disease (COPD) directly from visualization using available medical imaging techniques. Accordingly, this study proposes an innovative and noninvasive diagnostic method to detect obstruction locations using computational fluid dynamics (CFD) and convolutional neural network (CNN). Specifically, expiratory airflow velocity contours were obtained from CFD simulations in a subject-specific 3D tracheobronchial tree. One case representing normal airways and 990 cases associated with different obstruction sites were investigated using CFD. The expiratory airflow velocity contours at a selected cross section in the trachea were labeled and stored as the database for training and testing two CNN models, i.e., ResNet50 and YOLOv4. Gradient-weighted class activation mapping (Grad-CAM) and the Pearson correlation coefficient were employed and calculated to classify small-airway obstruction locations and pulmonary airflow pattern shifts and highlight the highly correlated regions in the contours for locating the obstruction sites. Results indicate that the airflow velocity pattern shifts are difficult to directly visualize based on the comparisons of CFD velocity contours. CNN results show strong relevance exists between the locations of the obstruction and the expiratory airflow velocity contours. The two CNN-based models are both capable of classifying the left lung, right lung, and both lungs obstructions well using the CFD simulated airflow contour images with total accuracy higher than 95.07%. The two automatic classification algorithms are highly transformative to clinical practice for early diagnosis of obstruction locations in the lung using the expiratory airflow velocity distributions, which could be imaged using hyperpolarized magnetic resonance imaging." @default.
- W4210342917 created "2022-02-08" @default.
- W4210342917 creator A5015963016 @default.
- W4210342917 creator A5026699023 @default.
- W4210342917 creator A5035942767 @default.
- W4210342917 creator A5053354069 @default.
- W4210342917 creator A5057384477 @default.
- W4210342917 creator A5074635902 @default.
- W4210342917 date "2022-03-08" @default.
- W4210342917 modified "2023-10-06" @default.
- W4210342917 title "Aiding Airway Obstruction Diagnosis With Computational Fluid Dynamics and Convolutional Neural Network: A New Perspective and Numerical Case Study" @default.
- W4210342917 cites W1962021597 @default.
- W4210342917 cites W2010094601 @default.
- W4210342917 cites W2067927950 @default.
- W4210342917 cites W2068933712 @default.
- W4210342917 cites W2135430305 @default.
- W4210342917 cites W2165115072 @default.
- W4210342917 cites W2305422646 @default.
- W4210342917 cites W2505030495 @default.
- W4210342917 cites W2754103191 @default.
- W4210342917 cites W2764252425 @default.
- W4210342917 cites W2768654481 @default.
- W4210342917 cites W2792024375 @default.
- W4210342917 cites W2804286258 @default.
- W4210342917 cites W2914093099 @default.
- W4210342917 cites W2921177942 @default.
- W4210342917 cites W2937281851 @default.
- W4210342917 cites W2981693078 @default.
- W4210342917 cites W3003509762 @default.
- W4210342917 cites W3093597327 @default.
- W4210342917 cites W3129095322 @default.
- W4210342917 cites W3197500347 @default.
- W4210342917 cites W3209740842 @default.
- W4210342917 cites W639708223 @default.
- W4210342917 cites W3181848732 @default.
- W4210342917 doi "https://doi.org/10.1115/1.4053651" @default.
- W4210342917 hasPublicationYear "2022" @default.
- W4210342917 type Work @default.
- W4210342917 citedByCount "7" @default.
- W4210342917 countsByYear W42103429172022 @default.
- W4210342917 countsByYear W42103429172023 @default.
- W4210342917 crossrefType "journal-article" @default.
- W4210342917 hasAuthorship W4210342917A5015963016 @default.
- W4210342917 hasAuthorship W4210342917A5026699023 @default.
- W4210342917 hasAuthorship W4210342917A5035942767 @default.
- W4210342917 hasAuthorship W4210342917A5053354069 @default.
- W4210342917 hasAuthorship W4210342917A5057384477 @default.
- W4210342917 hasAuthorship W4210342917A5074635902 @default.
- W4210342917 hasConcept C105922876 @default.
- W4210342917 hasConcept C116067010 @default.
- W4210342917 hasConcept C121332964 @default.
- W4210342917 hasConcept C127413603 @default.
- W4210342917 hasConcept C141071460 @default.
- W4210342917 hasConcept C153180895 @default.
- W4210342917 hasConcept C154945302 @default.
- W4210342917 hasConcept C1633027 @default.
- W4210342917 hasConcept C2778333281 @default.
- W4210342917 hasConcept C41008148 @default.
- W4210342917 hasConcept C44154836 @default.
- W4210342917 hasConcept C57879066 @default.
- W4210342917 hasConcept C71924100 @default.
- W4210342917 hasConcept C78519656 @default.
- W4210342917 hasConcept C81363708 @default.
- W4210342917 hasConceptScore W4210342917C105922876 @default.
- W4210342917 hasConceptScore W4210342917C116067010 @default.
- W4210342917 hasConceptScore W4210342917C121332964 @default.
- W4210342917 hasConceptScore W4210342917C127413603 @default.
- W4210342917 hasConceptScore W4210342917C141071460 @default.
- W4210342917 hasConceptScore W4210342917C153180895 @default.
- W4210342917 hasConceptScore W4210342917C154945302 @default.
- W4210342917 hasConceptScore W4210342917C1633027 @default.
- W4210342917 hasConceptScore W4210342917C2778333281 @default.
- W4210342917 hasConceptScore W4210342917C41008148 @default.
- W4210342917 hasConceptScore W4210342917C44154836 @default.
- W4210342917 hasConceptScore W4210342917C57879066 @default.
- W4210342917 hasConceptScore W4210342917C71924100 @default.
- W4210342917 hasConceptScore W4210342917C78519656 @default.
- W4210342917 hasConceptScore W4210342917C81363708 @default.
- W4210342917 hasIssue "8" @default.
- W4210342917 hasLocation W42103429171 @default.
- W4210342917 hasOpenAccess W4210342917 @default.
- W4210342917 hasPrimaryLocation W42103429171 @default.
- W4210342917 hasRelatedWork W2008240558 @default.
- W4210342917 hasRelatedWork W2022687681 @default.
- W4210342917 hasRelatedWork W2123863762 @default.
- W4210342917 hasRelatedWork W2357888771 @default.
- W4210342917 hasRelatedWork W2767651786 @default.
- W4210342917 hasRelatedWork W2912288872 @default.
- W4210342917 hasRelatedWork W4285135362 @default.
- W4210342917 hasRelatedWork W4286380729 @default.
- W4210342917 hasRelatedWork W4376106187 @default.
- W4210342917 hasRelatedWork W564581980 @default.
- W4210342917 hasVolume "144" @default.
- W4210342917 isParatext "false" @default.
- W4210342917 isRetracted "false" @default.
- W4210342917 workType "article" @default.