Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210342968> ?p ?o ?g. }
- W4210342968 endingPage "507" @default.
- W4210342968 startingPage "477" @default.
- W4210342968 abstract "Abstract The wood-based furniture manufacturing industries prioritize quality of production to meet higher market demands. Identifying various types of edge-glued wooden panel defects are a challenge for a human worker or a camera. Several studies have shown that the detection of edge-glued defects with low, high, normal, overlong, short is identified but detection of residue and bluntness is highly challenging. Thus, the present model identifies defects of low, high, normal, overlong, short by computer vision and/or deep learning, whereas defects of residue and bluntness by deep learning based decide by pass for having better performance. The goal of this paper is to provide an improved defect detection solution for wood-based furniture manufacturing industries by process automation. Therefore, a system was designed that takes defect input images from a camera as raw image and laser-aligned image for defect detection of the edge-glued wooden panel. The process automation then performs computer vision-based image features extraction with deep learning for defect detection. The aim of this paper is to solve edge-glued defect detection problems by using design and implementation of edge-glued wooden defect detection, that can be stated as edge-glued wooden panel defect detection using deep learning (WDD-DL) for process automation by artificial intelligence and Automated Optical Inspection (AOI) consolidation. Possibly there exist several types of defects on the edges while edge-banding on the wooden panel in furniture manufacturing. Therefore, the scope is to achieve higher accuracy by raw image and laser-aligned image feature extraction using deep learning algorithms for final result defect classification in WDD-DL by AOI. The WDD-DL system uses Gabor, Harris corner, morphology, structured light detection and curvature calculation for pre-processing and InceptionResnetV2 Convolutional Neural Network algorithm to attain the best results. The applications of this work can be found in quality control of the furniture manufacturing industry for an edge, corner, joint defect detection of the wooden panels. The WDD-DL achieves best results as the precision, recall and F1 score are 0.97, 0.90 and 0.92, respectively. The experiments demonstrate higher accuracy achievement as compared to other methods with overkill and escape rate analysis. Ultimately, the discussion section provides an interesting experience sharing about the necessary factors for implementing the WDD-DL in real-time industrial operations." @default.
- W4210342968 created "2022-02-08" @default.
- W4210342968 creator A5001285591 @default.
- W4210342968 creator A5001435691 @default.
- W4210342968 creator A5006996435 @default.
- W4210342968 creator A5015103550 @default.
- W4210342968 creator A5016233136 @default.
- W4210342968 creator A5035521529 @default.
- W4210342968 creator A5038488825 @default.
- W4210342968 creator A5076780482 @default.
- W4210342968 date "2022-01-31" @default.
- W4210342968 modified "2023-09-27" @default.
- W4210342968 title "Edge-glued wooden panel defect detection using deep learning" @default.
- W4210342968 cites W1515840219 @default.
- W4210342968 cites W1588043677 @default.
- W4210342968 cites W2069813073 @default.
- W4210342968 cites W2072994056 @default.
- W4210342968 cites W2108888774 @default.
- W4210342968 cites W2110125524 @default.
- W4210342968 cites W2116796501 @default.
- W4210342968 cites W2117539524 @default.
- W4210342968 cites W2141039252 @default.
- W4210342968 cites W2194775991 @default.
- W4210342968 cites W2274280696 @default.
- W4210342968 cites W2341928239 @default.
- W4210342968 cites W2465628751 @default.
- W4210342968 cites W2605132254 @default.
- W4210342968 cites W2605955758 @default.
- W4210342968 cites W2605958287 @default.
- W4210342968 cites W2781907070 @default.
- W4210342968 cites W2810323137 @default.
- W4210342968 cites W2813925077 @default.
- W4210342968 cites W2892951611 @default.
- W4210342968 cites W2916869646 @default.
- W4210342968 cites W2944303778 @default.
- W4210342968 cites W2945270739 @default.
- W4210342968 cites W2970648063 @default.
- W4210342968 cites W2978436092 @default.
- W4210342968 cites W2980611806 @default.
- W4210342968 cites W2986442261 @default.
- W4210342968 cites W2992447349 @default.
- W4210342968 cites W2994590618 @default.
- W4210342968 cites W3009428189 @default.
- W4210342968 cites W3009635072 @default.
- W4210342968 cites W3014419444 @default.
- W4210342968 cites W3015335398 @default.
- W4210342968 cites W3087751617 @default.
- W4210342968 cites W3120098581 @default.
- W4210342968 doi "https://doi.org/10.1007/s00226-021-01316-3" @default.
- W4210342968 hasPublicationYear "2022" @default.
- W4210342968 type Work @default.
- W4210342968 citedByCount "6" @default.
- W4210342968 countsByYear W42103429682023 @default.
- W4210342968 crossrefType "journal-article" @default.
- W4210342968 hasAuthorship W4210342968A5001285591 @default.
- W4210342968 hasAuthorship W4210342968A5001435691 @default.
- W4210342968 hasAuthorship W4210342968A5006996435 @default.
- W4210342968 hasAuthorship W4210342968A5015103550 @default.
- W4210342968 hasAuthorship W4210342968A5016233136 @default.
- W4210342968 hasAuthorship W4210342968A5035521529 @default.
- W4210342968 hasAuthorship W4210342968A5038488825 @default.
- W4210342968 hasAuthorship W4210342968A5076780482 @default.
- W4210342968 hasBestOaLocation W42103429681 @default.
- W4210342968 hasConcept C108583219 @default.
- W4210342968 hasConcept C111919701 @default.
- W4210342968 hasConcept C115901376 @default.
- W4210342968 hasConcept C115961682 @default.
- W4210342968 hasConcept C121684516 @default.
- W4210342968 hasConcept C127413603 @default.
- W4210342968 hasConcept C154945302 @default.
- W4210342968 hasConcept C162307627 @default.
- W4210342968 hasConcept C193536780 @default.
- W4210342968 hasConcept C199639397 @default.
- W4210342968 hasConcept C3018441589 @default.
- W4210342968 hasConcept C31972630 @default.
- W4210342968 hasConcept C41008148 @default.
- W4210342968 hasConcept C52622490 @default.
- W4210342968 hasConcept C5339829 @default.
- W4210342968 hasConcept C78519656 @default.
- W4210342968 hasConcept C9417928 @default.
- W4210342968 hasConcept C98045186 @default.
- W4210342968 hasConceptScore W4210342968C108583219 @default.
- W4210342968 hasConceptScore W4210342968C111919701 @default.
- W4210342968 hasConceptScore W4210342968C115901376 @default.
- W4210342968 hasConceptScore W4210342968C115961682 @default.
- W4210342968 hasConceptScore W4210342968C121684516 @default.
- W4210342968 hasConceptScore W4210342968C127413603 @default.
- W4210342968 hasConceptScore W4210342968C154945302 @default.
- W4210342968 hasConceptScore W4210342968C162307627 @default.
- W4210342968 hasConceptScore W4210342968C193536780 @default.
- W4210342968 hasConceptScore W4210342968C199639397 @default.
- W4210342968 hasConceptScore W4210342968C3018441589 @default.
- W4210342968 hasConceptScore W4210342968C31972630 @default.
- W4210342968 hasConceptScore W4210342968C41008148 @default.
- W4210342968 hasConceptScore W4210342968C52622490 @default.
- W4210342968 hasConceptScore W4210342968C5339829 @default.
- W4210342968 hasConceptScore W4210342968C78519656 @default.
- W4210342968 hasConceptScore W4210342968C9417928 @default.