Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210343882> ?p ?o ?g. }
- W4210343882 endingPage "e2144967" @default.
- W4210343882 startingPage "e2144967" @default.
- W4210343882 abstract "Stigmatizing language in the electronic health record (EHR) may alter treatment plans, transmit biases between clinicians, and alienate patients. However, neither the frequency of stigmatizing language in hospital notes, nor whether clinicians disproportionately use it in describing patients in particular demographic subgroups are known.To examine the prevalence of stigmatizing language in hospital admission notes and the patient and clinician characteristics associated with the use of such language.This cross-sectional study of admission notes used natural language processing on 48 651 admission notes written about 29 783 unique patients by 1932 clinicians at a large, urban academic medical center between January to December 2018. The admission notes included 8738 notes about 4309 patients with diabetes written by 1204 clinicians; 6197 notes about 3058 patients with substance use disorder by 1132 clinicians; and 5176 notes about 2331 patients with chronic pain by 1056 clinicians. Statistical analyses were performed between May and September 2021.Patients' demographic characteristics (age, race and ethnicity, gender, and preferred language); clinicians' characteristics (gender, postgraduate year [PGY], and credential [physician vs advanced practice clinician]).Binary indicator for any vs no stigmatizing language; frequencies of specific stigmatizing words. Linear probability models were the main measure, and logistic regression and odds ratios were used for sensitivity analyses and further exploration.The sample included notes on 29 783 patients with a mean (SD) age of 46.9 (27.6) years. Of these patients, 1033 (3.5%) were non-Hispanic Asian, 2498 (8.4%) were non-Hispanic Black, 18 956 (63.6%) were non-Hispanic White, 17 334 (58.2%) were female, and 2939 (9.9%) preferred a language other than English. Of all admission notes, 1197 (2.5%) contained stigmatizing language. The diagnosis-specific stigmatizing language was present in 599 notes (6.9%) for patients with diabetes, 209 (3.4%) for patients with substance use disorders, and 37 (0.7%) for patients with chronic pain. In the whole sample, notes about non-Hispanic Black patients vs non-Hispanic White patients had a 0.67 (95% CI, 0.15 to 1.18) percentage points greater probability of containing stigmatizing language, with similar disparities in all 3 diagnosis-specific subgroups. Greater diabetes severity and the physician-author being less advanced in their training was associated with more stigmatizing language. A 1 point increase in the diabetes severity index was associated with a 1.23 (95% CI, .23 to 2.23) percentage point greater probability of a note containing stigmatizing language. In the sample restricted to physicians, a higher PGY was associated with less use of stigmatizing language overall (-0.05 percentage points/PGY [95% CI, -0.09 to -0.01]).In this cross-sectional study, stigmatizing language in hospital notes varied by medical condition and was more often used to describe non-Hispanic Black patients. Training clinicians to minimize stigmatizing language in the EHR might improve patient-clinician relationships and reduce the transmission of bias between clinicians." @default.
- W4210343882 created "2022-02-08" @default.
- W4210343882 creator A5016290671 @default.
- W4210343882 creator A5036110536 @default.
- W4210343882 creator A5071269992 @default.
- W4210343882 date "2022-01-27" @default.
- W4210343882 modified "2023-10-18" @default.
- W4210343882 title "Examination of Stigmatizing Language in the Electronic Health Record" @default.
- W4210343882 cites W1976985160 @default.
- W4210343882 cites W1980938690 @default.
- W4210343882 cites W1991838121 @default.
- W4210343882 cites W2002427087 @default.
- W4210343882 cites W2038411619 @default.
- W4210343882 cites W2058046738 @default.
- W4210343882 cites W2088121266 @default.
- W4210343882 cites W2107244468 @default.
- W4210343882 cites W2123107134 @default.
- W4210343882 cites W2139766084 @default.
- W4210343882 cites W2145172939 @default.
- W4210343882 cites W2150696250 @default.
- W4210343882 cites W2171892143 @default.
- W4210343882 cites W2226201197 @default.
- W4210343882 cites W2285929355 @default.
- W4210343882 cites W2293994407 @default.
- W4210343882 cites W2413163057 @default.
- W4210343882 cites W2472302489 @default.
- W4210343882 cites W2578529686 @default.
- W4210343882 cites W2594519269 @default.
- W4210343882 cites W2765994086 @default.
- W4210343882 cites W2792485237 @default.
- W4210343882 cites W2793256951 @default.
- W4210343882 cites W2806851214 @default.
- W4210343882 cites W2938712967 @default.
- W4210343882 cites W2962751288 @default.
- W4210343882 cites W2991599941 @default.
- W4210343882 cites W2999645127 @default.
- W4210343882 cites W3013574799 @default.
- W4210343882 cites W3088399774 @default.
- W4210343882 cites W3126626515 @default.
- W4210343882 cites W3133913092 @default.
- W4210343882 cites W3135993836 @default.
- W4210343882 cites W3157008346 @default.
- W4210343882 cites W3180412891 @default.
- W4210343882 cites W4244840838 @default.
- W4210343882 doi "https://doi.org/10.1001/jamanetworkopen.2021.44967" @default.
- W4210343882 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35084481" @default.
- W4210343882 hasPublicationYear "2022" @default.
- W4210343882 type Work @default.
- W4210343882 citedByCount "43" @default.
- W4210343882 countsByYear W42103438822022 @default.
- W4210343882 countsByYear W42103438822023 @default.
- W4210343882 crossrefType "journal-article" @default.
- W4210343882 hasAuthorship W4210343882A5016290671 @default.
- W4210343882 hasAuthorship W4210343882A5036110536 @default.
- W4210343882 hasAuthorship W4210343882A5071269992 @default.
- W4210343882 hasBestOaLocation W42103438821 @default.
- W4210343882 hasConcept C126322002 @default.
- W4210343882 hasConcept C126838900 @default.
- W4210343882 hasConcept C137403100 @default.
- W4210343882 hasConcept C142724271 @default.
- W4210343882 hasConcept C143095724 @default.
- W4210343882 hasConcept C144024400 @default.
- W4210343882 hasConcept C151956035 @default.
- W4210343882 hasConcept C156957248 @default.
- W4210343882 hasConcept C17744445 @default.
- W4210343882 hasConcept C19165224 @default.
- W4210343882 hasConcept C195910791 @default.
- W4210343882 hasConcept C199539241 @default.
- W4210343882 hasConcept C2777810591 @default.
- W4210343882 hasConcept C2779473830 @default.
- W4210343882 hasConcept C512399662 @default.
- W4210343882 hasConcept C71924100 @default.
- W4210343882 hasConceptScore W4210343882C126322002 @default.
- W4210343882 hasConceptScore W4210343882C126838900 @default.
- W4210343882 hasConceptScore W4210343882C137403100 @default.
- W4210343882 hasConceptScore W4210343882C142724271 @default.
- W4210343882 hasConceptScore W4210343882C143095724 @default.
- W4210343882 hasConceptScore W4210343882C144024400 @default.
- W4210343882 hasConceptScore W4210343882C151956035 @default.
- W4210343882 hasConceptScore W4210343882C156957248 @default.
- W4210343882 hasConceptScore W4210343882C17744445 @default.
- W4210343882 hasConceptScore W4210343882C19165224 @default.
- W4210343882 hasConceptScore W4210343882C195910791 @default.
- W4210343882 hasConceptScore W4210343882C199539241 @default.
- W4210343882 hasConceptScore W4210343882C2777810591 @default.
- W4210343882 hasConceptScore W4210343882C2779473830 @default.
- W4210343882 hasConceptScore W4210343882C512399662 @default.
- W4210343882 hasConceptScore W4210343882C71924100 @default.
- W4210343882 hasIssue "1" @default.
- W4210343882 hasLocation W42103438821 @default.
- W4210343882 hasLocation W42103438822 @default.
- W4210343882 hasLocation W42103438823 @default.
- W4210343882 hasOpenAccess W4210343882 @default.
- W4210343882 hasPrimaryLocation W42103438821 @default.
- W4210343882 hasRelatedWork W1993555144 @default.
- W4210343882 hasRelatedWork W2015191509 @default.
- W4210343882 hasRelatedWork W2037611947 @default.
- W4210343882 hasRelatedWork W2164301666 @default.